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We describe the implementation of numerical models of shallow water flow on
the surface of the sphere, models which include the nondivergent barotropic limit as
a special case. All of these models are specified in terms of a new grid-point-based
methodology which employs an heirarchy of tesselations derivative of successive
dyadic refinements of the spherical icosahedron. Among the potential advantages of
such methods is th@(n) complexity in operation count that can be achieved for
ann degree of freedom model if multigrid techniques are employed to solve the
associated elliptic problems. Currently prevalent spectral transform models are, in
contrast,0(n?) complex due to the Legendre transform that must be performed to
transform between spectral and grid-point representations of model fields at each
time step. Using the new methodology, we have implemented two different for-
mulations of each of the barotropic and shallow water dynamical systems. In one
formulation, the vector velocity field is directly advanced in time; in the other, time
integration is carried out entirely in terms of scalar quantities (i.e., absolute vorticity
in the barotropic model and, in the more general shallow water model, height and
velocity potential). We describe discretizations of the governing equations in which
all calculations are performed in Cartesian coordinates in local neighbourhoods of
the almost uniform icosahedral grid, a methodology that avoids potential mathemat-
ical and numerical problems associated with the poles in spherical coordinates. A
number of standard numerical tests are performed with the resulting models and the
results employed to compare them with each other and with previously published
results obtained using other methodologies. Initial tests are performed for a standard
suite that now constitutes the generally accepted benchmark for shallow water mod-
els on the sphere. The advantages and the disadvantages of the two shallow water
formulations (vector and scalar) are contrasted and employed to demonstrate that
the new icosahedral methodology is highly competitive with previously suggested
grid-point models. The remaining results which we discuss relate to the process
of erosion of a stratospheric polar vortex by a forced stationary Rossby wave dis-
turbance, a physical problem which has previously been analyzed in detail in sev-
eral well-known spectral transform simulations. It is shown that all of our models
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properly simulate this intensely nonlinear and computationally challenging physical
Process. © 1999 Academic Press

Key Words:shallow water equations; computational fluid dynamics; multigrid
methods; refined icosahedral mesh; spherical domain; vortex erosion.

1. INTRODUCTION

The simulation of hydrodynamic flows in spherical geometry is a problem of comput
tional fluid dynamics which is of great importance in many areas of physical science. |
recent paper (Stuhne and Peltier [1]) we addressed this problem and reported results obt
with a novel grid-point based numerical methodology that is well suited for integration
the partial differential equations that govern the evolution of such flows. The numeri
framework developed therein was based upon a spatial discretization derived from the
ular icosahedron and employed finite element multigrid methods (see, e.g., Hackbusch
in the solution of the elliptic equation that arose in the nondivergent barotropic dyna
ical system that was our focus of interest in this initial stage of technical developme
These fundamental building blocks, along with a number of additional algorithms e
ployed to perform the operations of advection and numerical differentiation, were invok
to solve the inviscid, nondivergent two-dimensional barotropic vorticity equation (see, e
Pedlosky [3]). It was thereby demonstrated that the new numerical structure was effectiv
solving an important class of highly nonlinear inviscid fluid dynamical problems involvin
the cascade of structure to small scales. Specifically, we were able to accurately repro
the well-known simulations of Juckes and Mcintyre [4], who employed a convention
spectral transform model (see, e.g., Orszag [5]) to represent the dynamical process invc
in the erosion of a polar vortex by an impinging Rossby wave. The new numerical struct
was also tested by employing it to simulate the process of barotropic instability of a zo
flow with strong meridional shear and the subharmonic pairing interaction which thereat
ensues among the individual vortices generated by the primary instability.

The practical importance of the work described in Stuhne and Peltier [1], which we w
herein extend to the significantly more challenging case of shallow water dynamics,
primarily in the fact that grid-point models based upon the use of multigrid techniques h:
the potential to achieve a dramatic improvement in efficiency over the currently preval
spectral transform models. Since this conventional methodology requires the compute
of Legendre transformations between spectral and grid-point space at each time step, |
an operation count which i©(n?) complex in the number of degrees of freedan(see
Orszag [5]). In contrast, grid point models can be designed which are s@iatlycomplex,
an improvement which has the potential to significantly extend the range of practice
achievable spatial resolutions, since there will clearly be some thresholibyond which
such methods remain viable after spectral transform methods have degraded to the po
being prohibitive in computational cost. Although this threshold has not yet been reacl
in practice, and although there are spectral transform schemes under development v
promise a less dramatic nonlinear degradation of performancésee, e.g., Driscoll and
Healy [6]), the rapid growth in the availability of computing resources and the inheren
optimal O(n) complexity of grid-point methods suggests that such methods may soon
extremely useful, especially for applications requiring the maximum attainable resoluti
The results presented in Stuhne and Peltier [1], for the case of nondivergent barotr
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dynamics, demonstrate explicitly that the expected optimal algorithmic complexity is,
fact, achieved in test cases which resolve physical processes that are significantly r
complex than those manifested in the simpler tests to which numerical models are typic
subjected.

Even beyond the theoretically expected improvement in efficiency at high spatial rest
tion, there are practical benefits in the use of an entirely grid-point-based methodology.
example, such methods allow one to avoid the anomalous oscillations which are assoc
with Gibbs phenomena in spectral transform models and also provide an inherently n
natural representation for local features such as mountains. Spectral transform mo
moreover, perform key numerical operations in a Gaussian grid-point domain, over wt
there is a dramatic spatial inhomogeneity which wastefully over-resolves polar regions (
can lead to numerical problems if some form of atypical forcing and/or dissipation m
be applied in a particular analysis). This last shortcoming can be ameliorated in spec
transform models if one employs reduced Gaussian grids (e.g., Hortal and Simmons
but doing so disrupts the exact calculation of quadratic terms which is one of the key ad\
tageous features of such models. It can be circumvented almost entirely in grid-point-be
methodologies provided that one employs a mesh structure which “tiles” the sphere ir
approximately uniform fashion. In geometric terms, there are, of course, no perfectly L
form tesselations of this domain except for the exact spherical projections of the so-ca
Platonic solids (i.e., tetrahedra, cubes, octahedra, etc.). As early as the 1960s, Willian
[8] and Sadournyet al. [9] experimented with nondivergent barotropic models of invis-
cid fluid flow discretized on grids which were derived from the approximately uniforr
grid generated by the spherical projection of the regular icosahedron (which is, with
sides, the most complex Platonic solid). The nondivergent barotropic model of Stuhne
Peltier [1] employs a similar grid structure which was originally devised by Baumgardn
and Frederickson [10] in the context of their studies of thermal convection in a thre
dimensional spherical shell at infinite Prandtl number. This particular mesh offers a num
of numerical advantages, most notably by virtue of the fact that successive subdivision
the primary icosahedral discretization are performed in a recursive way which facilitates
application of multigrid methods and allows for the specification of natural finite eleme
coordinates on spherical triangles. The model described in Stuhne and Peltier [1] invok
combination of finite element and finite difference techniques designed specifically for t
grid in such a way as to obtain &(n) complex hybrid algorithm with which to advance
the solution in time. This methodology represents a very significant improvement over
early efforts of Williamson [8] and Sadourmy al.[9], which did not incorporate multigrid
techniques as these had yet to be invented.

As the simplest one layer model of fluid flow which supports complex nonlinear dynam
and a turbulent “cascade,” the nondivergent barotropic model is of considerable phys
interest in and of itself. It is therefore rational to begin the assessment of the applicab
of any body of numerical methodology with analyses based upon it (as Williamson |
Sadournyet al.[9], and we ourselves have done). The dynamics, however, derive from t
assumption that divergence and divergence tendency vanish identically. These assumy
entirely suppress the appearance of fast gravity waves, whose existence, as is well kn
may lead to computational instabilities resulting from temporal aliasing in the numeric
models appropriate for global atmospheric, oceanographic, and astrophysical simulati
In contrast, shallow water models, which also apply to the evolution of a single lay
of fluid, treat the thickness of this layer as a dynamically varying field and thus admi
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representative spectrum of linear and nonlinear wave phenomena and of their assoc
numerical artifacts (see, e.g., Pedlosky [3]). Consequently, implementation of this m
complex representation of fluid flow has become dleefactostandard test to which any
numerical methodology intended for subsequent use in full three-dimensional models or
sphere must be subjected. For this reason, Willianes@h.[11] proposed a standard suite
of tests whereby different shallow-water models in spherical geometry might be evalue
and compared in a variety of physical configurations. Although these tests manifest phys
behavior which is considerably less challenging to resolve than that which was conside
for test purposes with the nondivergent barotropic model in Stuhne and Peltier [1], t
are nevertheless extremely valuable in providing standard points of comparison betw
numerical methodologies. It is to be hoped that further tests such as our own might als
adopted as additional standards which are more completely representative of the full phy
complexity realizable in one-layer hydrodynamic models. In the analyses to follow, we w
both describe and extend the basic numerical techniques employed in the nondiver
barotropic model of Stuhne and Peltier [1] both to the shallow water simulation of t
complex cases considered therein and to a selection of the standard shallow water te:
Williamsonet al.[11].

Cullen[12], in one ofthe earliest examples of work in this area and, more recently, Mast
and Ohnishi [13] and Heikes and Randall [14, 15] have also described the implementa
of shallow water models in spherical geometry employing grid structures which are rela
to the regular icosahedron. All of the grid structures employed by these authors, howe
differ in significant respects from that of Baumgardner and Frederickson [10] which \
have elected to employ. Strictly speaking, Cullen’s [12] mesh structure cannot be said t
derived from the spherical icosahedron at all, since the basic figure is initially distorted
as to subdivide the sphere into three latitudinally distinct regions (a subdivision whick
realized only approximately in the Platonic figure). Masuda and Ohnishi [13], on the otl
hand, begin with a proper icosahedron, but employ a nonrecursive means of subdivic
spherical triangles to obtain higher resolution grids. Heikes and Randall [14, 15] employ
icosahedral basic grid and a recursive procedure of dyadic subdivision but apply a “twist
such away as to force the mesh to be symmetric about the equator (arguing that it is desi
for the numerical representation of idealized flows with cross-equatorial symmetry to ret
this property). Furthermore, these authors discretize the problem in such a way that the
is defined in terms of pentagonal and hexagonal Voronoi cells on the sphere rather
in terms of triangular facets (see, e.g., Augenbaum and Peskin [16]). Whether or not
“twist” which Heikes and Randall [14, 15] apply to their grid is a desirable feature is large
an aesthetic issue. Nothing is gained in terms of formal accuracy over the dyadically refi
icosahedron which we employ while there is likely to be some additional complexity
computer code required to implement the “twisted” grid. Our own inclination is to prefer
most natural geometrical and logical structure delivered by the Platonic solid itself anc
treat the degree of cross-equatorial asymmetry in an ideally symmetric flow as anindica
of numerical error which might be camouflaged if symmetry were imposed. In any eve
physically realized flows in nature never manifest precise cross-equatorial symmetry.

Of greater significance than these details of the icosahedron-based grid structure i
choice of the mathematical form of the shallow-water equations to be employed and
discrete approximation of them on the appropriate grid. Various formulations of the shallc
water dynamical system were, in fact, presented and compared in WillisghabfiL1]. Of
the icosahedron-based models, those described by Masuda and Ohnishi [13] and Heike
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Randall [14, 15] employ the streamfunction, velocity potential formulation of the equatior
Layer thicknessh*, and absolute vorticityy, both evolve in time according to simple
conservation laws of flux form, namely (with representing eithdr* or »),

@+V-(uq>)=o, (1)

at
while the horizontal divergence of flow velocity=V - u, is governed by a similar but
somewhat more complex equation. The system is dynamically closed because the str
function, v, and velocity potentialy, may be obtained, respectively, fropands through
the solution of associated elliptic problems and may, in turn, be employedarpibsteriori
diagnosis of a numerical approximation fo(see below). This is simply the shallow-water
extension of the form of the nondivergent barotropic equation employed by Williams
[8], Sadournyet al.[9], and Stuhne and Peltier [1] (we will continue to employ the symbo
Q = n to denote the absolute vorticity in what follows). However, in discretizing the nonc
vergent barotropic and full shallow-water equations, Williamson [8], Sadowhaly[9],
Masuda and Ohnishi [13], and Heikes and Randall [14, 15] all rely upon the fact that sc:
advection in two dimensions may be cast in terms of specific Jacobian and flux opera
in a way which allows one to avoid the explicit computation of the velocity veatan
the course of a numerical advection step. It is therefore unclear how any of these mo
would incorporate the additional numerical operations required in fully three-dimensiol
flow models. Furthermore, even in 2D integrations, these methods estimate a partic
term in the shallow-water divergence equation by applying discrete differential operat
iteratively (rather than by invoking a proper Taylor series-based stencil), a procedure wt
could potentially lead to difficulties. The basic body of numerical methodology develop
and invoked in Stuhne and Peltier [1], in contrast, is considerably more versatile in th
respects since computational stencils are derived in grid-point space under assump
which allow for the consistent discretization of much more general terms. A similar &
proximation technique was subsequently derived by Swarztraatlar[17] and referred
to as the “Cartesian method.”

Considering further the issue of the extension of a shallow-water model to the case of f
three-dimensional flow, there is a difficulty inherent in the use of entirely scalar progno:s
variables as in the streamfunction-velocity potential formulation. It is true that atmosphe
models generally treat the vertical velocity as an independent component to be diagn:
according to the hydrostatic balance relation, thus allowing for scalar variables to be
tained in the representation of the horizontal flow (see, e.g., Bourke [18] and Hoskins
Simmons [19]). There are, however, significant geophysical phenomena, particularly in
vicinity of the equator, for which an inherently nonhydrostatic representation is requir
(see DeVerdite and Schopp [20]). Under such conditions, the mathematical decomposit
of tangential velocity into two scalar fields, where possible at all, becomes considera
more complex. Shallow-water models based upon a full primitive variable vector formu
tion will, in contrast, generalize to these cases in a relatively straightforward way. Of
shallow water models mentioned, the one developed by Cullen [12] utilizes this formu
tion, which can, however, give rise to its own problems. Most notably, due to the underly
curvature of the spherical geometry, the advective form of the shallow water dynami
system includes metric terms which diverge at the singularities of whatever coordinate :
tem is chosen (usually spherical polar coordinates). This introduces pole problems alt
and beyond those that would be associated with grid spacing and may account for son
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the numerical difficulties mentioned by Cullen [12] and which have prevented his methc
ology from gaining wider acceptance despite its being based upon the use of an alr
homogeneous grid. As Cullen [12] has also discussed, a further problem may lie in
fact that first-order finite elements were employed in the discretization of the equatio
which is a very low-accuracy spatial approximation. The methods formulated in Stut
and Peltier [1] avoid the latter difficulty entirely by invoking a second-order spatial Tayl
series approximation. Moreover, when combined with the constrained three-dimensic
formulation of the shallow-water equations due totéC[21] (see below), our framework
can accomodate a discretization in which the veloaityis integrated without requiring
the computation of metric terms. The only evident disadvantage of adopting a constrai
velocity formulation is the additional computer memory required to store a mathematice
superfluous third velocity component in shallow-water dynamics. This is, however, nc
problem on modern computers, given the large increases of available memory that |
occurred as memory cost has dramatically fallen.

As may be inferred on the basis of the above commentary, the basic body of numer
methodology originally applied by Stuhne and Peltier [1] to nondivergent barotropic ©
namics is sufficiently versatile to enable us to implement shallow-water models in spher
geometry which are based on either scalar or vector prognostic variables. One can, a
will discuss, also devise a vector version of the nondivergent barotropic model describe
Stuhne and Peltier [1], which is, like the nondivergent barotropic models of Williamson |
and Sadournegt al.[9], based on the scalar advection of absolute vorticity. We therefo
have effective numerical means at our disposal of comparing the relative merits of ve«
and scalar formulations of a given one-layer model as well as the behaviours of the r
divergent barotropic and full shallow-water one-layer representations of the same phys
system (it being expected that the former should be recovered as a limit of the latter ur
appropriate scaling conditions). The main objective of this study, and its primary nove
is in addressing these issues in the physical context of cases presented in Stuhne and |
[1] as well as in the standard test set of Williamsdral. [11]. As will be evident from our
discussion, although there has been significant attention in the recent literature to s
shallow-water models on icosahedral grids, little consideration has been given to the
ternative vector formulations which are realizable on the same mesh. The derivation
vector-based shallow-water equations model with our earlier local approximation meth
and its application to problems with significant dynamics is therefore something of a n
elty in and of itself. As we took pains to stress in Stuhne and Peltier [1], our own effo
are not, at the present stage, intended either to be competitive with existing produc
models, based upon the spectral transform methodology, or to represent implementa
of any of the possible alternative formulations of shallow water or nondivergent barotro
dynamics with optimized algorithmic subcomponents. What we do aim to establish, ratt
is an objective basis for comparing these alternatives and for ascertaining the most fru
avenues for further development. This being said, however, it will be seen that the res
achieved can be quite competitive with those hitherto published for other icosahedral g
point models, a fact which will be seen to fully justify the fundamental principles upc
which our approach is based.

In Section 2 of what follows, we discuss both the shallow water and nondiverge
barotropic dynamical systems and the initial conditions to be employed in their integ
tion in a way which develops several of the themes mentioned in this Introduction in gree
technical detail. In Section 3, we will briefly review the various numerical methods original
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developed in Stuhne and Peltier [1] and discuss the extensions required for application t
more general case of shallow water dynamics. In Sections 4 and 5 we present and dis
the results of analyses obtained with the new numerical methodology applied, respecti
to the standard test cases of Williamsairal.[11] and to the more challenging problem of
Rossby wave-induced vortex erosion. Concluding remarks are offered in Section 6.

2. MODEL EQUATIONS

The basic structure of the physical problem that is analyzed in shallow-water dynar
is that of horizontal flow within a layer of fluid having a dynamically varying height and
static underlying topography. The mathematical formulation of the problem may theref
be cast in terms of a two-component vector velocity figld, u,), and a scalar height
field, h=h*+ hg, in which h* is the dynamically varying component ahgis the static
topography. On the sphere, of course, the fluid layer height and the topography ma
thought of as constituting perturbations to a closed surface whose curvature requires
the general velocity vectan,= u;e; + U,e;, be expanded in terms of a bagis,(x), €:(X)},
which varies with position. For practically useful coordinate systems (e.g., spherical pc
coordinates) the resulting dynamical equations include Christoffel symbols which dive
at the singularities of the mapping (e.g., at the poles). Fortunately, there are at least
relatively straightforward schemes whereby the potential problems resulting from this n
be obviated, one of which preserves the vector character of the dynamics, while the o
transforms the flow to one described in terms of the evolution of scalar fields.

2.1. Vector Form

Coté [21] has described a formulation in which shallow-water flow on the sphere
treated as a constrained instance of a general 3D flow. Specifically, the velocity vector f
is expanded in terms of three componentis,uy, andu,, such that

U = Uy& + Uyey + U &y, (2)

whereey, ey, ande, are (constant) unit vectors along the Cartesiagry-, andz-axes. This
requires that an extra field be introduced, but it eliminates all singularities and, furthermc
it will be seen, all asymmetries in the roles played by the componenisrothe vector
evolution equation. In terms of the three componeRisiy, andu,, this evolution equation
is, of course, underdetermined on the 2D spherical surface and requires that an addit
constraint be appropriately imposed so as to ensure that

X-U= XUy + YUy +zU, =0 €)

for all x and for all time. When nondimensionalized on the rotating sphere, the result
shallow-water dynamical system, as originally analyzed bie(Xakes the form

Ez)—lt’lJr(u-V)quRgl(ZJrF)x><u=—FO’2Vh—(u-U)X (4)
ah*

ot

+ V- (h*u) =0, (5)
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wherein the last term of Eq. (4) is a centripetal force whose influence is such as to k
fluid particles confined to the unit spherical surface defined by

X-X=x+y*+22=1 (6)
In addition to variables already defined, the system (4)—(5) includes the nondimensic

external scaling parameteRy (a Rossby number) an, (a Froude number), which are
defined, respectively, as

u
Ro= 2Q0r's (7)
and
u
T e o

In these definitiong,s and2g are the radius and angular frequency of the rotating sphere,
is the surface gravitational acceleratithijs a characteristic velocity in the rotating frame,
andH is a characteristic fluid layer depth. If one imposes the requiremenbthe of a
magnitude such as to make the nondimensiorld O(1) in amplitude in the rotating
frame (and thus essentially defiriésn terms of the global kinetic energy of the flow), then
the parameteR, directly constrains the structure of admissible dynamical fields. Howeve
if, as is the case in the analyses to be considered in this study, the exact form of the velc
field is specified priori, thenRy plays no ole in the physical definition of the problem and
can simply be set in such a way as to put the nondimensional equations into a conver
form. For present purposes, it will suffice to chodse- 2Qrs (i.e., Ry =1) and then to
consider the dynamics to be controlled entirely by a new Froude number

E 2Q0f s
0= .
+/gH

In terms of physical applications, it is interesting to observe that, provided the nondim
sional parameters are suitably re-interpreted, Eqgs. (4) and (5) have a form equivalel
the 2D compressible Euler equations. This fact has been exploited in drawing analo
between these two otherwise dissimilar physical systems (e.g., in Ford’s [22] applicat
of Lighthill's [23] aerodynamic sound generation theory to gravity waves).

It should be noted that thecoordinate that appears explicitly in Eq. (4) correspond
to the latitudinal variation of the Coriolis parameter (6ds terms of colatitude). Some
of the numerical tests that we will perform call for an angular displacement between
rotational and computational poles and for these cases the appropriate transformatic
easily obtained. The functioR which perturbs in Eq. (4) represents a quasi-topographic
forcing that we will, for some purposes, take to be of the form

9)

_ 0.3xA®M) B(cos1z)

F(x,t) =
(x.1) Y

which is equivalent to that assumed in the analyses of Juckes and Mclntyre [4]. The fol
of the functionsA andB are illustrated in Stuhne and Peltier [1], wherein we described tt

(10)
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application of a nondivergent barotropic version of the model to the reproduction of Juc
and Mclntyre’s results. Further comparisons pertaining to this test case will be preser
in what follows, all of which will be based upon the use of the same forntfoFor the
purposes of other analyses, we will $e£ 0.

2.2. Scalar Form

By taking the divergence and curl of the momentum equation, the system (4)—(5) n
be recast into the equivalent form,

VZ(?)_)t(+F02h+%u.u>:(Q—Z—F)Q—X'(UXVQ) (11)
ad
8_? = -V (Qu) (12)
ah*
= —V - (h*u), (13)

in which the velocity vector field may be obtained in terms of a streamfuncfipand a
velocity potential,x, by means of the relation

u=V x (Xy) + Vy. (14)

The absolute vorticityQ, evolves according to a conservation law of flux form (Eqg. (12))
of the same form as that which govelis as previously mentioned. The time evolution of
these two quantities may therefore be determined on the basis of a suitable advection sc
and the streamfunction;, that is required to determine the velocity in such a scheme, m:
be inferred from the absolute vorticity by inverting the Poisson equation,

V3 =—-Q+2z+F. (15)

In this formulation of the shallow water model the dynamics are thus described entirely
terms of the evolution of the scalar quantiti€},h*, andy, thus providing an alternative
means of avoiding problems associated with the underlying curvature of spherical geom
(there being no Christoffel symbols arising in spatial derivatives of scalars).

By inverting the Laplacian operator in Eq. (11) to directly obtain the time-tendency
the velocity potentialpx /dt, one may avoid having to compute any numerical deriva
tives higher than first order. In contrast, evolving the divergeiite; V2y, as is done,
for instance, by Heikes and Randall [14, 15], necessitates the numerical estimation of
second-order operat®i? (%u -u) after afirst-order numerical derivative (as per Eq. (14)) ha
already been invoked in the calculationofThe effective differentiation stencil therefore
derives from multiple passes over the data, rather than from a proper Taylor series expar
optimized to the local grid structure. Such a device (which we also use to approximate
V8 hyperdiffusion operator in Section 3.4 below) can potentially give rise to distortions a
should, if possible, be avoided in the discretization of the key dynamical terms in a mo«
The algorithm implied by the form of Egs. (11)—(13) may allow one to avoid this potenti
difficulty, but not in all circumstances. Most notably, the advantage gained does not ne«
sarily continue to apply to time-stepping schemes deriving from the so-cahagimplicit
formulation in which the height field is expanded about an arbitrary reference in suc
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way as to minimize the aliasing of fast, grid-scale gravity wave propagation by the cho
of time step (see Kwizak and Robert [24]; Robettal. [25]). This is the case because,
in contradistinction to explicit schemes, the- 1 time level of a semi-implicitly defined
field ® cannot be directly determined through a simple diagnosigbt at previous time
levelsi,i — 1, etc.

Semi-implicit schemes may be devised for both the vector and the scalar formulation
the shallow water equation system and theoretically allow for time steps to be several til
larger than in explicit time-stepping schemes (the latter being limited by the phase spee
effectively numerical gravity waves rather than merely by the CFL criterion on advecti
velocity). Greater, although still not unconditional, numerical stability is thus achieved at
cost of distorting the physics at scales close to that of the grid. The implementation of th
methods, moreover, generally entails the solution of elliptic equations of a form simi
to those which must be solved in the scalar icosahedral models of Masuda and Ohr
[13] and Heikes and Randall [14, 15], as well as in our Egs. (11)—(13). Consequen
it is likely that these models, which must already bear the computational cost of ellip
inversions, would, on the whole, be accelerated by semi-implicit methods. This is r
however, necessarily true of our vector shallow-water model, since, as is clear from
Egs. (4)—(5), direct integration of the primitive variable form of the shallow-water equatio
using the explicit technique should be a relatively efficient numerical operation on any g
The vector-explicit scheme may therefore allow one to reproduce a simulation perforn
using a semi-implicit vector model (or any scalar model) at comparable operation co
even though significantly smaller time steps must be employed. In any case, it is of ber
to establish a basis for comparison by first implementing new numerical discretizatic
in fully explicit mode, since the direct resolution of relevant physical processes in t
way precludes the possibility that aphysical distortions associated with an implicit sche
might produce misleading results. The previous models cited above all employ expl
time-stepping schemes and we will adhere to this precedent.

Therefore, we will focus in the present paper on the implementation and comparisor
various explicit formulations of shallow-water dynamics. Aside from its modifying the tyf
ical sequence of numerical operations, one of these formulations, as expressed in Egs.
(13), represents the same basic process of scalar integration and elliptic inversion w
has been invoked in the previously cited studies. It is of interest, therefore, to consi
how results obtained under this new discretization compare with results from other sc
shallow-water models, as well as with results from a new vector shallow-water model wh
we have also devised on the basis of the same numerical techniques. Given the verse
of our basic methods, any of a number of such models can be practically implemented \
them and possibly extended to the simulation of full 3D flows (our vector formulatio
indeed, is already derived through the constraint of a 3D flow to the surface). In practi
terms, the only sure means of assessing the relative merits of the alternative formulatio
through the direct comparison of the results obtained by applying them to specific proble
of interest.

2.3. The Nondivergent Barotropic Model

Assuming the flow to be nondivergent for all time (i.e., setiing: V2 = 0) yields what
is commonly referred to as the (nondivergent) barotropic model (see, e.g., Pedlosky |
which is, in dynamical terms, the simplest possible representation of one-layer flow. In t
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limit, x is everywhere an undetermined (and irrelevant) constant and Eq. (14a$sumes
the simpler form,

U=V x (Xy). (16)

Together with theQ-advection equation (12) and the Poisson equation (15), this define
closed scalar model based solely upon the dynamical process of absolute vorticity adve
in which the height fieldh, need never be explicitly considered. The implementation of thi
model using the new numerical framework was described in detail in Stuhne and Peltier
Where it is requiredh can be diagnosed from the other fields if one imposes the balan
condition of Charney [26], substitutingy /9t =0 into Eq. (11), and thereby obtaining

h=Hg+ F§{—%u-u+v—2[(Q—z—F)Q—x-(uxVQ)]}, (17)

in which V—2 denotes the inverse Laplacian operator &fgds an undetermined constant.
Some value of the constahly must be supplied as an external parameter, but it is to &
expected om priori grounds thaHy ~ 1, in order to maintain consistency with the choice
of height scaleH in the determination of the Froude number in Eqg. (9). For nondiverge
u, the resultingh is the balanced height field about which small amplitude shallow-wat
fluctuations would propagate as gravity waves. Gravity wave effects are, of course, ¢
pressed in the nondivergent barotropic model, wherein the variatibflwds nadynamical
implications. Substitution of the expression (17) ffidinto the height field evolution equa-
tion (13) will establish that nondivergent barotropic dynamics may be realized as a limiti
case of shallow water dynamics whegis small (corresponding to the limit of infinitely
fast gravity wave propagation).

If we take the divergence of Eq. (4) for a nondivergent barotropic flow, we derive
alternative expression, namely

V2(Fg%h) = -V - {(u-V)u+ R (z+ F)x x u+ (u-uyx}, (18)

by which the weighted balanced height fiel%gzh, is diagnosable directly from at any
time level. In combination with the vector momentum equation (4), this defines a vec
formulation of the nondivergent barotropic model (recognizing thatRhealue and the
constant background height are irrelevant). We therefore have both vector and scalar f
of each of the shallow water and nondivergent barotropic dynamical systems. These wil
of use to us in making a variety of intercomparisons to be described in what follows.

2.4. Initial Conditions

In most of the cases to be discussed, the initial form of the flow will be taken to be b
nondivergent and balanced and therefore fully specified in terms of an initial barotro
potential vorticity field, Qo(x), from which theug field may be obtained by means of
Egs. (15) and (16). The corresponding balanced helghitmay then be derived from
Eq. (17) with a suitable choice fy. For such initial conditions, the various shallow-water
and nondivergent barotropic formulations which we have discussed may be initializec
as to have numerically identicalandh fields. They will, of course, diverge in the course
of their subsequent evolution and it will be of interest to us to consider in this way
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comparative behaviours of the different models which can be devised within our ba
numerical framework. In one instance, a simulation must be initialized with a more gene
divergent flow and in this case (which will only be analyzed using the vector form of
shallow water equations) we simply set the fieldsand hg according to the prescribed
initial conditions.

3. NUMERICAL METHODS

Many of the details of the spatial discretization, data structures, and numerical algoritt
required to perform the numerical operations relevant to this study have already been
cussed in some detail in Stuhne and Peltier [1]. In this section, we will therefore lin
the discussion to providing a brief summary of the main ingredients previously descrik
and for the most part will focus on the extensions of this work required in the prese
shallow-water context.

3.1. Grid Structure

Interms of the mathematical notation developed by Stuhne and Peltier [1], the definitiol
the grid structure of Baumgardner and Frederickson [10] proceeds from the basic sphe
icosahedron, or level O grid, as follows. The Platonic figure consists of 20 identical spher
triangles, each of which we denote lﬁ?j’k. Referenced by the three indiciesj, andk
(whose order of occurrence is unimportant in our notation) are three pBfht®?, andPy,
which define the vertices of the triangle. The boundary of the triangular re@jﬂ@ffﬂk, is
defined by three arcs4ffj , Aﬁk, andA?,k, which are the geodesic curves connecting pair
of vertices. Adyadic refinemerftom grid levell to grid levell 4+ 1 entails the subdivision
of each arc in such a way as to enhance the number of points in the finer grid by
number of arcs in the coarser one. Each triangle of the leyedl is, moreover, subdivided
into four subtriangles by additional geodesic arcs which link these bisectors. Starting fr
the spherical icosahedron as grid level 0, this process of dyadic subdivision recursi\
determines a mesh at arbitrary levekhich has 162 + 2 grid points, wheren =2 (see
Stuhne and Peltier [1]). The hierarchy of grids thus generated is best illustrated graphic
and in Fig. 1 we therefore show the mesh structures of grid levels 0 through 6 that re
from the above described construction. For the purpose of organizing the data in comp
memory, it is convenient to logically subdivide the basic icosahedron into 10 diamor
consisting of pairs of facets. One can thus arrange the points of gridllevel 10n x n
logical square arrays and two outliers at the north and south poles. In order to furt
facilitate data manipulation,BORTRAN array of dimensions (O1+ 1, 0:n+ 1, 10) is used
to index each field, extra edge cells for a given diamond being employed to store copie
values from neighbouring diamonds (values which are updated at appropriate points ir
computation). The values at northern and southern polar nodes are stored in the respe
locations (0, 1, 1) and (0, 1, 6). The exact geometric layout of the data is fully describec
Stuhne and Peltier [1].

3.2. Numerical Spatial Derivatives

Denoting byx! the 3D position vector at poirfe! of grid levell and by an arbitrary
scalar or vector field evaluated at that point, our numerical methodology frequently requ
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form
| | | | 1o 5 o 1 5
fi (X) =f; +fiﬁls+fi,2t + Efiﬁs +]:iy4st+ Efif)t 5 (20)
in which
s=V-(x=x), t=w-(x—x]) (21)

are 2D affine coordinates on the tangent plar/afrhe 3D vectors! andw! are defined
as

bl x X! a x x
1 _ i i | — 1
M=) d M T @ o) B (22)

in which al andb! are the basis vectors of the local tangential coordinate system and
given by the expressions

ad=x, —x(x-x), bl =x—x(x %), (23)

whereinx']- andx, are the coordinates of two neighbouring points chosen suctPtha!,
andP| are not all on the same geodesic. From these formulae, it follows (see Stuhne
Peltier [1]) that the gradient and Laplacian of the local approximation may be obtained

VE(X) = FL v+ Flow! (24)
and
V2F (x) = 3|v'] + 2F! VW, + F 5{v'| (25)

The five coefficientsf' must be linearly related t@" F! for a valid approximation to
result which effectlvely determines tﬁEJ of Eq. (19) However, since all pomts but those
lying on the level-0 icosahedron have six (rather than five) nelghbourgfltpa'alues are
generally overdetermined. We therefore obtain them by minimizing the quantity

2= |1F04) -

which results in the linear problem discussed in Stuhne and Peltier [1].
When spatially discretized according to this procedure, the vector form of the shallc
water evolution equations given by Eqgs. (4)—(5) may be written as

1112

(26)

av!
el (-RI.-9). (27)

in which the four-component vectdft is defined agu!, h¥') and theR! andS components
in the RHS are given, respectively, by

R = Z [(uf - Vi) Ul + Fo Vbl + ROM (z + F)x < up + (uf-u)x,  (28)
j
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and

§=> [u-Vih' + 0!V )] (29)

j
The spatially discretized forms of the scalar evolution equations (11)—(13) take the forr

AW!

— _< Fo2hl — 2u U+ AL TQLL T[h*]) (30)

in which the three-component vect# corresponds toy!, Q!, h'), Al is the evaluation
at positionx! of the field satisfying
VIA=(Q-z-F)Q—X-(uxVQ), (31)

andT;'[ -] generically denotes the discretization

0l == [u - Vi @) + Bi(VP; ] (32)
j
In Egs. (30) and (32)4! are determined by the discrete form of Eq. (14), namely
i
3.3. Laplacian Inversion

Inthe solution of Egs. (15), (18), and (31), itis required that we obtain numerical solutic
to Poisson problems with right-hand sides whose values at pos’diamepi' . Inthese three
equationSpi' values are computed, respectively, as

p=-Q+2+F (34)
A== (55), (), e S (), o

—Zv [(Z 4+ F)x, x ) + (Ul - u))x ] + o (35)

=(Q -2 - Zx (uf x Vi, Q). (36)

In Eg. (35), we have mtroduce{d1I , U, U as the components of the vectdr as well as
an additional termp;*, which will be specified (see below) so as to cancel the generation
local divergence in the vector barotropic model. The matrﬁ&;é&x“)}j and(az/ax“axﬁ)!j
may be obtained by exactly the same procedure as that employed to obtain the dis
operatorwi'j and(Vz)}j (see the previous subsection and Stuhne and Peltier [1]). Howev
the Poisson problem itself it discretized according to this procedure. We treat it, rathe
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in terms of a finite element Galerkin procedure (see, e.g., Batla[27]), which results,
at any grid level, in the discrete equation system

> oS v) =, (37)
j

in which W} is the solution to be obtained/{, hi, andA; in the respective Egs. (15), (18),
and (31)).§ ; is the finite element density matrix, and the RIS,is o/, weighted by the
finite element mass matri;Mi',j; ie.,

bl => M. (38)
j

For the details of hovSﬁ[j andMi'J- are obtained for the spherical icosahedral grid, the read:
is referred to Stuhne and Peltier [1]. The only nonstandard aspect of the analysis which n
to be mentioned here is the fact that we employ the basis functions and recurrence rela
which were specifically derived by Baumgardner and Frederickson [10] for this grid a
which have a number of favourable numerical characteristics already discussed.

The solution of Eq. (37) is carried out by means of the multigrid algorithm of Karpi
and Peltier [28] which was also specifically designed for the icosahedral grid. In Stut
and Peltier [1] we describe and denoteM@2DS the implementation of a 2D version of
this algorithm, the original version of which, denoted %§3DS, applied to a 3D shell
of finite thickness. The basic operation of theéxDS multigrid algorithms invokes the
simple sawtooth restriction—prolongation cycle (see Hackbusch [2]) and may be represe
abstractly in the form of a recursive specification for an inverse operator for Eq. (37) wh
may be applied iteratively at levél

(&) b}, =0

(39)
S'(bl)o P'-to £-M-1o RI{B}, | #£0.

e - {

In the above, the restriction and prolongation opera®tsndP', appropriately transform
the finite element representation of the RHS at Ietethe respective levels- 1 and + 1.

In the 2D case, the RHS-dependent operatih!), is the diagonal component of the line
Jacobi mass lumped smoothing operator of Karpik and Peltier [28]. Its specific form, alc
with other details of the multigrid algorithm, is provided in Stuhne and Peltier [1].

3.4. Time Stepping

In Stuhne and Peltier [1] we described and compared simulations in which the tin
stepping was carried out either by means of a Lax—Wendroff advection scheme on
icosahedral grid or by means of a straightforward leapfrog time-stepping scheme. The L
Wendroff scheme (see Lax and Wendroff [29]) invokes a special discretization of equatit
of the type of (1) which was found, in the barotropic model of Stuhne and Peltier [1],
exhibit a greater degree of numerical stability, but somewhat poorer energy conserva
characteristics. In the case of shallow-water dynamics, the divergence equation (11) is
in flux form and must consequently be handled by some alternative means of advect
We therefore consider in this study only leapfrog time-stepping under which the tempc
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discretizations of the evolution equations (27) and (30McandW! take the generic form
Al(t + At) = Al (t — At) + 2AtNI[A()], (40)

in which Al (t) is the appropriate three- or four-component vector at (discrete)ttiaed
we define

NI[A®] = RHSIAD] + v > (VI (VD) (VI AL D), (41)
p.q.r

whereRHS} [A(t)] denotes the evaluation of the RHS of Eq. (27) or (30) at that time, ar
the summation term represents a numerical approximation¥8 hyperviscosity term
with parametric coefficient. This filtering term is usually needed to suppress numeric:
instabilities arising from grid-scale noise and computational waves. The familiar tirm
splitting instability of the leapfrog scheme (see, e.g., Haltiner [30]) has been eliminated
inserting, at every tenth time step, a “restart” step of the form

Al (t n %) = 2 + Al - AD) + ANAW)] (42)
| | | At
Al(t + At) = Al(t) + AtN| [A(w?)} (43)

which is an Euler backward stepg. cit) with an additional averaging between thand
t — At time levels. These implementations of spatial and temporal filters will be seen to
adequate for purposes of this study, but they suffer from some deficiencies. The applice
of the high-order hyperdiffusion operat®® = (V?)3, can itself introduce a-dependent
restriction upon the Courant number beyond the standard CFL criterion. This is clee
not desirable, and we are investigating possible improvements, such as might be achi
with time-lagged dissipation operators (see Browniial. [31]). Even as the methods
currently stand, however, they are by no means unique in exhibiting such a shortcom
For instance, Heikes and Randall [14] report a similar time step restriction tied to t
occurrence of the Laplacian operator in their discretized evolution equations. Tempe
filtering in our methodology could also potentially be improved with the application «
alternative techniques (e.g., Asselin [32]).

Two additional points require mention in relation to the time-stepping scheme. First,
underdetermined initial conditions of the discrete equation (40) may be fully specified
taking a “restart” step of the form (42)—(43), while assuming

Al(—At) = Al(0) — AIN'[A(O)]. (44)

Second, in order to inhibit the accumulation of divergence in the vector barotropic moc
we set thep! term in Eq. (35) as
-1 Loy it —
2At Zj Vij - uj(0), ift=0,
) = A VU (t— 5, if t = (10M + 3)At, )
' @ADTIY (V) - Ul ) + VI, -u)t — AD), i t = 10(M + DAL,

(AH™IY, Vi - Ut — A, otherwise

in which M > 0 is an integer.
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3.5. Surface Integrals and Invariants

In the analysis of the test cases of Williamsatal. [11] and for the purpose of other
tests, it is necessary to estimate global surface integrals of the form

1 2r  pm/2
| (h) = — / / h(x.6) cosd do da (46)
Ar Jo  J_xp2

(in which we use the symbols of Williamsaat al. [11]). We have found, for the case of
our numerical methodology, that good results are efficiently obtained if we estimate s
integrals as simple averages over points on a given grid leizel,

1
I (h) ~ mzm, (47)

where, as beforey=2'. The accuracy of this estimate is only weakly compromised by th
slight differences between the areas of individual spherical polygonal cells that exist :
given level of resolution.

Three important positive-definite global invariants of the shallow water dynamical sy
tem are the surface integrals lof (mass),%h*u -u+ (h? —h?2)/(2F&) (total energy), and
Q?/(2h*) (potential enstrophy). The corresponding barotropic values for total energy a
potential enstrophy are simply the surface integraléu)f u and%Qz, respectively. For
these invariants, one defines normalized “conservation-violations” at taae

LEX D) — 1§, 0)

li(G1) = | E(x.0) (48)

(see Williamsoret al.[11]).

For the test cases of Williamsaat al. [11], comparison must be made with analytical
solutions of the shallow-water equations expressed in terms of the threefigld, t),
ur(x,0,t), andvr (%, 0,t) where the latter two are the 2D velocity components in the
spherical polar coordinate basis. Using the definitions of Williamsbal. [11], it is a
simple matter to compute thHe, I,, andl., errors in theh andu fields predicted by our
icosahedral model if we define, at positidn the fields:

e (&, xx)-ul
W+ )" )
o)
I 0

The contribution to the error of the north and south polar points is taken to be zero si
the basis vectors may be chosen arbitrarily there.

3.6. Nomenclature

For brevity in what follows, we will introduce a simple convention for naming the variou
numerical models which result from the discretizations outlined in this section. Barotro
models will be referred to asbrl, in whichl is the grid level number andis v for a vector
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model ands for a scalar model. Shallow water models are given names of theXetiln

in which| andx play the same roles. A few examples will suffice to convey the meanin
sbré is a scalar barotropic model at grid level 6 (as in most of the simulations of Stuh
and Peltier [1]);ssw5 is a scalar shallow model on a level-5 grigw7 is a vector shallow
model on a level-7 grid, etc.

4. TEST CASES I: THE STANDARD TEST SUITE

The first results which we will consider, that have been obtained by applying the meth
ology outlined in the preceding section, derive from the standard numerical tests propc
by Williamsonet al. [11] for shallow-water models on the sphere. In performing thes
tests, we have utilized a variety of subroutines and data which were obtained from
/pub/chammp/shallow directory of theftp. cgd.ucar. edu server. First, all evaluations
of analytically specified fields were performed with the original components afitkiepP
semispectral shallow-water model on a 64820 Gaussian grid. Results were then bi-
linearly interpolated onto the appropriate icosahedral grids. This is probably slightly le
accurate than direct evaluation at grid points, but we have found that interpolation eri
are extremely small. The same method was employed to evaluate fieldadt@dr files
containing observational data since we found that the routines supplied for the evaluatic
spectral fields at arbitrary points were both prohibitively inefficient and less accurate at ¢
levels 6 and 7. Finally, we also employed t#AMMP model routines for plotting contoured
data and errors after interpolating linearly from the geodesic triangles of the icosahe
grid to the points of the Gaussian grid.

All of the standard tests of Williamsogt al. [11] have been carried out in 32-bit arith-
metic on an SGI Challenge L server employingel models. In order to make additional
comparisons, a number of these simulations were also reproducedswitimodels or by
using 64-bit arithmetic on a Cray J90. The standard bases for comparison are the publi
solutions of Jakob-Chieet al.[33] for the spectral transform model. None of the icosahe
dral grid point models discussed (our own included) has yet achieved matching accul
in the dynamical tests. Amongst the other numerical methodologies referred to, the n
recent, and the one most comparable with ours, is that of Heikes and Randall [14, 15
particular, theewig02562 andtwig10242 models of these authors, which were integratec
in (>64-bit) Cray arithmetic, have the same number of degrees of freedom, respectively
ssw4 andsswb5 models. In the selection of results to be discussed herein, we will make
number of comparative references to Heikes and Randall [14, 15] and it will be of ben
to consider two general points at the outset. First and trivially, some of the plots in 1
above-cited papers deviate from the formats requested in Williaresah [11], e.g., in
showing different projections and illustrating contourdef— h rather tharh — ht as the
error from reference solutidm;. As already stated, we have employed the original plotting
routines and conventions. The second point, which is of far greater significance, is the
tention given by Heikes and Randall [15] to the issue of the global accuracy of numeri
operators on their twisted icosahedral grid. Specifically, they have shown, in considering
analogues of our grid levels 2 through 5, that their finite difference discretization manife
a degradation of accuracy which makes the operators significantly less than second-c
accurate over higher resolution ranges. Heikes and Randall [15] describe a modificatio
the basic grid structure which allows for the difficulty to be controlled in the case of ti
discretized Laplace and flux-divergence operators, but it remains a problem for the o
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operators (in particular, they do not consider the effects of making multiple passes thro
the data in computing th€2(u?/2) operator). The finite element multigrid methods anc
numerical differential operators described in Section 3 and in Stuhne and Peltier [1]

derived in a way which circumvents tlagpriori difficulties associated with the techniques
that Heikes and Randall adapt from Williamson [8] and Masuda and Ohnishi [13]. Howev
in discussing the practical application of our methods to Test Case 3 below, we will illustr:
that there is nevertheless a marked degradation of the convergence rate on high resol
grids (I =6 andl =7) which can be attributed to a number of factors. It should therefor
not be assumed that the issue of operator convergence has necessarily been fully res
for icosahedral grid structures in the present work and this is an area which therefore v
rants further study. We do not analyze it in detail herein, nor do we attempt to implem
optimizations of our numerical methodology. Our focus, rather, will be on the numeric
issues previously discussed.

Space will not permit us to discuss herein the results obtained for all of the stand
tests of Williamsoret al.[11]. In particular, Test Cases 4 and 6 will not be analyzed an
we will not deal with Test Case 1, except to simply note that a similar advection test
the Lax—Wendroff scheme on our grid was described in Stuhne and Peltier [1]. The res
obtained for the standard advection test under the leapfrog integration scheme employ
this study manifest an error distribution and magnitude that are very similar to those repol
by Heikes and Randall [14] for the corresponding resolution using their methodology.

4.1. Test Case 2: Global Steady-State Nonlinear Balanced Flow

The first test case we will consider assumes an infigffield that represents a simple
solid body rotation and takes the form

13
QO = _Z/v (51)

12
in which Z' is a coordinate whose axis is the origirzaxis rotated by an angte towards
the originalx-axis; i.e.,

Z = zcosa + X sina. (52)

If we take the new Coriolis parameter to Be(rather tharz) and sethg to the balanced
height field corresponding to this nondivergent flow, then we have, for any rotationangle
a steady state flow which should remain unchanged for all time. Errors and imperfection
the numerical solution may be ascertained by comparison with the analytical solutions
u, v, andh provided in Williamsoret al.[11]. All simulations to which we refer herein have
been integrated for the required 5 days at grid level five with a timestep225 s and a
(dimensional) diffusion parameter= 6.4 x 10?°> mf/s. Like Heikes and Randall [14], we
have found that the quality of the solutions does not appreciably depend upon the rots
anglec, verifying that our grid and discretization are almost spatially homogeneous in t
way in which they resolve the surface of the sphere.

In Fig. 2, we plot the., error inh as a function of time for four integrations: specifically,
a 32-bit and a 64-bit run with each of the modeds;5 andssw5 at rotation angler = /2.
What this figure clearly shows is that the approximate steady-state height fielcviguthie
simulations fluctuates little, in tHg, sense, from the initial estimate obtained by solving the
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FIG. 2. Test Case 2. Time serieslgf(h) errors for 32-bit and 64-bit integrations e$w5 andssw5 models
for steady state solid-body rotation with= /2.

discrete form of Eq. (17) (in which we chooblg so that the constant component agrees witt
that in the analytical solution of Williamsoet al.[11]). As might be expected, tHg, (h)
error is appreciably (about four times) smaller, where this elliptic Poisson problem is soh
at higher numerical precision. The error in the 64+kit5 simulation is about 4 x 1074,

as compared to thig,(h) error of approximately 5 x 10~* manifested by Heikes’ and
Randall's [14}twig10242 model for this same case. Given the clearly sensitive depender
of the error measures upon numerical precision, the modest discrepancy could easil
accounted for in terms of factors already discussed (in particular, the special optimizati
applied by Heikes and Randall to the discrete Poisson problem as well as our metho
interpolating analytical fields). If this is taken into consideration, it is fairly safe to concluc
that the performance of ousw5 model is quite comparable to that of Heikes and Randall’
[14, 15]twig10242 model. Thisis, howevenotthe case with ougsw5 model, in which, as
Fig. 2 shows, thé,, (h) error quickly rises to and then fluctuates over a range of substant
values(5 x 10-3-1072). Furthermore, except in the very early stages of the integration, tl
character of this error isot sensitive to numerical precision in the sense that the 32-bit ar
the 64-bit results do not differ appreciably. We therefore see that the quality of steady-s
solutions is significantly poorer undesw5 integrations, but it is more stable with respect
to small computational inaccuracies.

It is interesting to note the fact that Heikes’ and Randall’'s [14,tkA]g10242 model,
which incorporates only scalar quantities as integrated prognostic variables, has pe
mance similar to our vectarsw5 model. Our own scalarsw5 model, in contrast, manifests
an initial transient and converges to a computational steady state slightly different from
imposeda priori analytical flow. Another way of saying this is that the numerical state ¢
“balance” for the discrete form of system (11)—(13) appears, due to the particular seque
of operations implicit in its solution, not to coincide precisely with the Charney [26] balan
criterion of Eq. (17). There is, however, agriori problem in this since the definition of
Charney balance itself derives from somewhat arbitrary approximations. As we shall se
the results of Case 5 below, there is little discrepancy between the error novssscdnd
sswb simulations under non-steady-state conditions.
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4.2. Test Case 3: Steady-State Nonlinear Balanced Flow with Compact Support

This test case is identical to Case 2, except thatQhenitial condition in the rotated
coordinate system represents a more complex flow, containing a compact zonal jet wi
a limited range of (rotated) latitudes and a vanishing velocity field outside this regi
(see Williamsoret al. [11]). At given resolution, we have employed the same numerics
parameters in these integrations as in Case 2. Specifically, we employ, at grid éetiele
stepAt = 25! Aty, and a hyperdiffusive filtering parameter= 325! vy, whereAty andg
are the level-5 values given in the preceding subsection.

Appropriate comments in connection with the results obtained from our simulations
Case 3 are generally the same as those for Case 2. As previously stated, we will conside
convergence properties of thel,, andl , errors inh andu after 5 days with increasing grid
levell. Results are shown in Fig. 3 from 32-biwl integrations forx = 7 /3 andl varying
from 3 to 7. We plot, in addition to the six basic error measures, the q@r8ex 2')?,
whose functional form indicates an ideal quadratic convergence rate with respect to
mesh constant. It is thereby shown that this theoretically expected convergence ra
closely maintained up to level 5 by all error measures and up to level 6 by all byt the
error (which can be somewhat quirky when a few grid points fall very close to the poles
the imposed spherical polar coordinate system). Between levels 6 and 7, however, the
a clear degradation in the convergence properties of all error measures. As we have alr
discussed, itis a significantissue as to whether or not this and similar results are sympton
of a general convergence problem similar to that discussed by Heikes and Randall [15
considering this possibility, it should be noted, however, that the errors in these res
from Case 3 include the combined contributions of spatial and temporal truncation err
computational noise, numerical imprecision, interpolation, and other factors which have
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FIG. 3. TestCase 3. Convergence with grid levebfl,, |,, andl,, error norms oh andu after 5 model days.
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been considered in a controlled way. We have not, as yet, developed any means of prec
qguantifying these various influences at very high grid-point resolution, nor could we fi
any published results pertaining to comparably fine icosahedral mesh structures. Ove
range of resolutions which are commonly considered, the convergence properties of
model are very good.

4.3. Test Case 5: Zonal Flow over an Isolated Mountain

The initial condition for this case is specified identically to that of Case 2, except for t
choice ofa =0 (i.e.,Z = z), of a slower solid body rotation field described by

Qo = 1.043042, (53)

and of a nonzero static underlying topography given by

hs=:iﬁ){l—minll,:\/(k—3;)2+(6—7é)2]}. (54)

This choice of thehs field corresponds to an isolated mountain of nondimensional heig
50/149 (about 13 of the total fluid layer thickness) which is centered at polar coordinate
(Ac, 0c) = (37/2, t/6) (see Williamsoret al. [11]). Such a feature plays a role similar
to that of the quasi-topographic forcing, introduced in our vortex erosion simulations
(next section). Namely, it is a spatially fixed anomaly which excites strong nonlinear way
in the steady basic state. In the present case, however, the configuration does not |
in an intense enstrophy cascade with its associated chaotic vortex dynamics. The flo
therefore, considerably simpler from a computational perspective.

No analytical solution is available for the unsteady flow that develops in Case 5,
comparisons may only be made at 1-day intervals with results output from a high resolu
T-213 semispectral model and distributed in the §ik¥0114.cdf. We have performed
32-bit integrations of this case over the required 15-day interval with xoth andssw5
models employing (dimensional) numerical parameter values.12 x 10?% m®/s and
At =56.25 s. In Fig. 4, we show contour plots after 15 days of #he5 height field,

h, and of the deviationh — ht, from the T-213 simulation for both thesw5 and the
sswb integrations. Thén contour plot is virtually indistinguishable by inspection from the
twigl10242 results illustrated by Heikes and Randall [14]. Furthermore,vihes error
field shows a very similar distribution to that of theig10242 andtwig02562 models

of these authors, although the absolute magnitudes of the errors are slightly smaller ir
>64-bittwig10242 results and slightly larger in the corresponding results feetry 02562
(whose resolution corresponds to our grid level 4). Examination of the error field for t
sswb model in Fig. 4 reveals that the magnitudes of the error in the contoured field do |
differ significantly from those in thesw5 results, but that the spatial distributions do differ
somewhat. The fact that these integrations quickly approach a stage in which the quantit
error measures are very similar is confirmed in Fig. 5, in which we plot time series of t
l1, 12, andl, errors ofh for both vsw5 andssw5 models. The discrepancy in the spatial
distribution of errors is explicable in terms of our earlier remark that the discrete forms
the two mathematical formulations appear to embody slightly different criteria of balar
(or, in the terminology introduced by Leith [34], slightly different “slow manifolds”).
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To complete our consideration of Case 5, we turn our attention to Fig. 6, which sho
time series of the fractional conservation violatioh$¢), in the total numerical shallow-
water energy and potential enstrophy oftls@5 andssw5 models. In order to deemphasize
the influence on the total energy of the large background height field, we follow Heik
and Randall [14] in subtracting the potential enefgyp, of a reference state (we employ
the solution at = O for this purpose). The conservation propertiesEor E g of our two
models are essentially identical in terms of the maximum global violations (about 0.04),
they do differ somewhatin the detailed time evolutions of this error after the very early sta
of the simulation. The results of both, in the sense of absolute fractional deviations, are \
similar to those reported by Heikes and Randall [14] for their models (about 0.05). T
potential enstrophy conservation of theig10242 model of Heikes and Randall [14], in
contrast, is better than that of either of our models, manifesting a deviation of aRdr?
over the run. Our potential enstrophy conservation violations are, for comparison, ak
1x 1073 for ssws and 2x 1072 for vsw5. These violations are manifested in the decay
of enstrophy, as would be physically reasonable on the basis of dissipation by sub
scale processes. Interestingly, Heikes’ and Randall’'s [14] enstrophy violations, altho
guantitatively smaller, appear as an unnaterghancementf this quantity which could
prove destabilizing in strongly nonlinear simulations (such as the vortex erosion tests wi
we consider in the next section), wherein there is a very intense nonlinear enstrophy cas
taking place.

It is not surprising that models which explicitly discretize the conservation law of flu
form governingQ should exhibit better global enstrophy conservation properties, as ¢
curs in the relation between osgw5 andvsws results. Heikes’ and Randall’s models, in
which the time-stepping scheme fiot and Q is constructed explicitly on the basis of the
flux-conservation laws, exhibit still better global enstrophy conservation. Flux-conservi
advection schemes are easily incorporated into our own scalar models and, indeed, we
already experimented with a simple Lax—Wendroff method (see Stuhne and Peltier [1])
the present study, we have avoided introducing such complicating factors and consider
direct local approximations of the governing PDEs.

4.4. Test Case 7: Prescribed Height and Velocity Initial Conditions

The last standard test case for shallow-water models on the sphere that we will desc
entails the directinitialization of a numerical integration with, in general, a divergent veloc
field derived from atmospheric observations, along with a height field which is defined sc
to correspond to the measured altitude of the 500-mb pressure surface in these observa
We will consider herein only the particular subcase in the test suite which is initialized w
the atmospheric data of 00:00 GMT on Dec. 21, 1978 (see Williaresah [11]). These
initial conditions (to which nonlinear normal mode initialization has been applied so as
reduce spurious gravity wave activity) are, along with the output at days 1, 2, 3, 4, an
from a subsequent high-resolution (T-213) spectral transform integration, distributed in
file REF0077 . cdf. We setug andhg in anvsw5 model according to these initial conditions
and integrate for 5 days with the samand At parameters employed in Case 5. Figure 7
presents, in the form of two contour plots after 5 model days on a polar stereograr
projection of the northern hemisphere, the height fibldand the deviatiorhh — ht, from
the T-213 results. Once again, there is a very close correspondence between the h
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FIG. 7. Test Case 7. Height field), of vsw5 model in polar stereographic projection after 5 days and
corresponding deviatiom, — hy, from high-resolution T-213 simulation.

field of our vsw5 simulation and that of Heikes’ and Randall’s [1#}ig10242 model.
The height errors delivered by the two models also manifest a very similar distributic
although, in this case, it is our model which exhibits a modestly smaller error magnitu
The latter result, which is confirmed by thg (h) error measures (not shown), further
supports the contention, often repeated in this section, that¢h® model is closely
comparable in accuracy tarig10242, the modest discrepancies between them dependir
upon the detailed characteristics of the particular circumstance selected as the basi
comparison.

5. TEST CASES II: POLAR VORTEX EROSION

We next turn our attention to additional, more computationally challenging, test ca:
which relate to an interesting phenomenon of nonlinear wave/mean-flow interaction wr
occurs when a polar vortex is eroded by a quasi-steady wavenumber 1 forcing in the f
of an impinging Rossby wave. The ensuing dynamical interaction, originally studied
the well-known simulations of Juckes and Mclintyre [4], occurs in response to a lai
scale, nonzonal perturbation to the Coriolis parameter that is smoothly activated and
deactivated over a period of many model days. Juckes and Mcintyre [4] have demonstrz
inthe course of their work which employed a spectral transform, absolute vorticity advect
discretization of the nondivergent barotropic governing equations, that this forcing indu
a nonlinear wave-breaking event at a latitude where the zonal phase speed of the \
matches the zonal velocity of the mean flow, which culminates in the erosion of small-sc
vortices and thin vorticity filaments from the main polar vortex. The secondary vortic
structures thereafter interact with each other and with the zonal flow in a way that clos
mimics the atmospheric phenomenon that occurs in the wintertime stratosphere of Ea
southern hemisphere, a phenomenon that is of considerable importance to the understa
of the Antarctic ozone hole.

We will not concern ourselves further herein with discussion of the physics of the v
tex erosion problem since this has been extensively discussed elsewhere. Following
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arguments presented in Stuhne and Peltier [1], we will, rather, employ this phenomel
ogy to define an especially challenging benchmark that may be used to further investi
the quality of numerical models of flow on the 2-sphere. As such, it is particularly uset
from the perspective of the present study since, unlike the previously discussed test
Williamsonet al.[11], it is realizable within all four of our discretizations (i.ehrl, sbrl,
vswl, andsswl), shallow water simulations requiring only the additional input of a Froud
number,Fo. In Stuhne and Peltier [1], we have already presented and compared vortex ¢
sion results obtained frombré models under a variety of numerical conditions and fror
onesbr7 model. These simulations have verified that the dynamical processes invol
in vortex erosion are properly resolved and that, moreover, their physical characteris
are essentially unaffected by variations in grid-scale numerical behaviour associated w
change of advection scheme, a change of hyperviscous diffusion parameter, or a doul
of resolution (provided, of course, that the model is numerically stable under the requi
conditions). In the present study, we set these specifics in a consistent way and focu
stead upon the potentially far more significant impact of employing completely differe
mathematical formulations of the dynamical equations. As touched upon in the discus:
of results for Test Cases 3 and 5, different discretizations of the shallow water equations
imply slight variations in the computational “slow manifold.” Where this is the case, tf
influence of fluctuations in models with numerically identical initial conditions nesd
be confined to small-scale computational noise. Rather, in instances of chaotic flow ¢
acterized by a strong inverse energy cascade, as occurs in the later stages of polar v
erosion, fluctuations can develop into significant deviations in the dynamically significe
behaviour.

All of the simulations to be discussed have been performed with the leapfrog adv
tion scheme on gritl= 6. Having approximately 320 points along any diameter, this gri
level is comparable in resolution at the equator to the T-159 spectral transform mode
Juckes and Mclintyre [4]. In Stuhne and Peltier [1], we describe results fromstie
model which are qualitatively appropriate and consistent under various changes in m
parameter, but which manifest traces of anomalous, nonisotropic noise associated
thin filaments of vorticity (see Stuhne and Peltier [1]). It will be of particular interes
therefore, to examine how these and other subtle qualitative features of the small sc
nonlinear vortical structures are affected by the choice of mathematical formulation.
provide an initial point of reference, we illustrate in Fig. 8 the results of a comple
17-day integration of the vortex erosion problem obtained with our nondivergent vec
barotropic modelybr6. As in thesbr6 simulations first discussed in Stuhne and Peltie
[1], a (dimensional) time step akt =300 s and a hyperviscosity of= 6.8 x 107 m®/s
were employed, the same values originally used by Juckes and Mcintyre [4]. We show
1-day intervals, a stereographically projected, 200 pixellated rendition of absolute
vorticity, Q, in which the intensity of each pixel is set according to the linearly inter
polated value of the field at its projected center point on the surface of the sphere |
Q-scale being indicated by the colour bar). Up until approximatedj7, comparison of
the dynamic progression shown in Fig. 8 with the results forsbes model shown in
Stuhne and Peltier [1] will reveal the two to be essentially indistinguishable. These are
stages of the evolution in which the linear and nonlinear Rossby wave-breaking dynan
commence, leading to the initial stages of filamentation evident it h@é frame. How-
ever, as we illustrate below, once the strongly nonlinear dynamics progress beyond
critical stage, the slightly different representations of the computational “slow manifol
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implicit in the different models cause the results to begin to manifest markedly diverge
features.

In order to facilitate the detailed intercomparison of the results delivered by the ve
ous models, we show, in Fig. 9, three frames at time®, t =12, andt =15 from the
strongly nonlinear stages of each of five different simulations. The first set isvbaih
(a direct reproduction from Fig. 8); the second set is fearmé (a direct reproduction from
Stuhne and Peltier [1]); the third and fourth sets of three frames are from the shallc
water models'sw6 andssw6 integrated withAt = 20 s and» = 1.02 x 10?° mf/s at Froude
numberFy = 1.48, while the last set is fromsw6 under the same conditions, but with
Fo=3.32. In the shallow water simulations, we choose tigparameter in Eq. (17) so
that the mean component of the initial height field is unity, thus making the height scal
consistent with the choice of a value fbirin the specification of the Froude number. As
the figure confirms, the shallow water simulations with the relatively small Froude numk
Fo=1.48 (corresponding to a deep layer) are in a quasi-barotropic scaling regime in wh
their dynamics resemble those of the nondivergent barotropic model. The similarities
phenomenology between the flows are explicable in terms of the fact that the shalls
water models should tend to persist in a “balanced” state (or, in Leith’s [34] terms,
a “slow manifold”) satisfying the Charney balance condition of Eqg. (17) or some refin
ment thereof (see, e.g., Mcintyre and Norton [35]). The fact that our models exhibit the
similarities is further evidence of their consistency. The evident differences in the qu
titative predictions of the models after the onset of Rossby wave breaking are, morec
also explicable because any small errors in the instantaneous applicability of the balz
constraints (as must arise from discretization and from the norizeralue in the shallow
water simulations) will result in a chaotic amplification of deviations between traject
ries beginning from the same initial condition. In order to illustrate also a case in whi
a large deviation from Charney balance develops and plays an impastarinrthe dy-
namics, we also include results from the simulation at higher Froude nuifper3.32,
wherein it is clear, as we discuss further below, that significantly different phenomenolc
occurs.

Examination of the =9 frame in each of the first four simulations shown in Fig. 9
will reveal that there is just beginning to be a qualitative divergence between the str
tures of the predicted fields. Specifically, the “tail” of the vorticity filament manifests
varying behaviour in its interaction with the background flow; i.e., it points in differer
directions in thevbr6é and sbré simulations and “fades out” in thesw6 simulation.
Also, the protuberance which is evident on the main vortex exhibits small variations
shape across the simulations. Discrepancies become considerably more pronounc
thet =12 andt =15 frames, with significant variations between the patterns of vort
cal and filamentary structures which are shown for the different simulations. All, ho
ever, manifest the appropriate qualitative behaviour and there are, moreover, signifi
robust features. Examples of the latter are the coherence and basic shape of the
tral vortex and, at time = 15, the presence of a small, compact cyclone at a consiste
position and of a more diffuse anti-cyclonic structure adjacent to the main vortex. C
feature to note is the fact that only th®r6 simulation appears to manifest a signi-
ficant level of what is clearly anisotropic computational noise associated with the fi
ments in frames =12 andt =15 (thevbr6é model shows traces &t=12 but these are
much fainter). The effects which we ascribed to under-resolution in Stuhne and Pel
[1] do not seem to occur appreciably in the new formulations introduced in this stu
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FIG. 8. Half-toned plots of the absolute vorticity fiel@, in polar stereographic projection foxaré vortex
erosion simulation.
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FIG. 9. Half-toned plots of theQ field at timest =9, t =12, andt = 15 for vbr6é andsbré models;vsw6
andssw6 models at~, = 1.48; andvsw6 model atF, = 3.32. Format and scaling are as in Fig. 8.
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Since the basic numerical elements employed are the same, we can speculate that
els with a greater number of computational degrees of freedom may be less suscer
to noise (the scalar barotropic model, of course, advects only a single prognostic sc
field).

Turning our attention, now, to the final shallow-water simulatiorFgt= 3.32, it will
be clear that, in this regime, the pattern of the flow differs in significant ways from tt
nondivergent barotropic predictions. By=9, for instance, the structure formed by the
polar vortex and its associated filament is shifted in phase and significantly distortec
shape from the pattern in the first four simulations. Even more pronounced discrepan
are evident at =12, where there is a clear intrusion of low absolute vorticity fluid intc
a narrow band around the central vortex, an effect which strongly steepef@s ghedi-
ent in this region. Similar dynamics are discussed by Juckes [36] in relation to spec
transform shallow-water simulations of the winter stratosphere under equivalent sca
conditions (although these simulations introduce forcing in a different manner and the
fore cannot be directly compared to our own). Another observation to be made is that
filamentary structures in thEy = 3.32 simulation are, at later times, considerably weake
than in theFy = 1.48 and nondivergent barotropic simulations, with correspondingly mol
absolute vorticity concentrated in large-scale “rolled-up” structures consisting of tongt
of vorticity spiralling into central “beads”. Finally, as is evidentin the 15 frame, the cen-
tral cyclonic polar vortex in the high Froude number simulation is significantly elongate
whereas those in the other cases are close to circular. We will not discuss further he
the qualitative differences between barotropic and shallow-water results. The point wt
has been made is that the differing behaviouFgt 3.32 demonstrates that our model
resolves an inherently shallow-water scaling regime to which nondivergent barotropic t
ory is no longer a good approximation. As is to be expected, varfintdprough a range
of intermediate values (not shown) creates a continuous transition in the nature of
dynamics.

The final issue we will consider concerning the results obtained on the basis of
test simulations of the vortex erosion case pertains to the conservation of invariants
the nondivergent barotropic modefsr6 andsbr6. The quasi-topographic forcing is in-
troduced through the functioR in a way which does not invalidate the formal energy
and enstrophy conservation properties of the nondivergent barotropic equations anc
may therefore gauge our models’ performance in numerically conserving these quanti
Figure 10 shows time series of fractional conservation violatitp[%“u - u]andl; [%QZ], for
vbr6 andsbr6. These demonstrate the fact that the vector model conserves kinetic ene
somewhat better than its scalar counterpart, although, in absolute terms, the variation of
eral percentages which occurs in each is quite large. The enstrophy conservation resulf
a similar story, although, in this case it is the scalar model which performs modestly bet
which is consistent with our considerations in the discussion of Test Case 5. Neither tt
relatively poor conservation results nor the discrepancies between the models are surpr
when one recognizes, in the light of the above discussion, that the intense nonlinear inv
cascade will effectively propagate the effects of the grid-scale dissipation of enstroph
the large-scale dynamics. Conservation properties of the shallow water models, which
have considered in the context of an earlier test, are significantly better, but, pertair
to quantities defined in a different way, are not directly comparable to their nondiverg
barotropic analogues.
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FIG. 10. Kinetic energy and potential enstrophy conservation results/é@6 and sbré vortex erosion
simulation.

6. CONCLUSIONS

The basic body of numerical methodology first employed in @wadvecting non-
divergent barotropic model of Stuhne and Peltier [1] has been successfully applied to
discretizations of scalar and vector formulations of more general one-layer fluid dynat
systems on the sphere (i.e., to shallow-water dynamics, as well as nondivergent barott
dynamics). All of the resulting models, which we have denoted by the naméssbrl,
vswl, andsswl, have been shown to be capable of resolving the complex dynamics involy
inthe process of polar stratospheric vortex erosion (see Juckes and Mclintyre [4]). Such fl
being strongly nonlinear and involving the intense cascade of enstrophy to small scales
very challenging computationally, and our results therefore suggest that the methodo
under consideration is, in general, well-suited to the analysis of the full gamut of ne
inviscid fluid dynamic phenomena. With the shallow water modeid andsswl, we have
also successfully simulated the simpler, but still important, physical configurations invok
in the standard test set of Williamset al. [11]. Given these results and the fact that our
basic methodology is very versatile in its applicability to different models and its extendik
ity to discretizations of arbitrary spatial dimension, we can conclude that it is likely to |
well-suited to the general problem of simulating three-dimensional hydrodynamic flows
spherical shell geometry. This is clearly the goal towards which we are working.
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Being based upon the same numerical components as those described in Stuhng
Peltier [1], all of the models we have discussed herein maintair©ttmy complexity in
operation count per time step which we demonstrated in this previous paper. We hav
yet expended very little effort to optimize the individual model codes employed, and
we will not discuss the absolute performance of these models in great detail but me|
reiterate the result of Stuhne and Peltier [1] thatsané vortex erosion simulation runs
at approximately 2.5 CPU seconds per time step on one processor of an SGI Challen
server with a 150-MHz clock. Of greater interest is the relative performance of the varic
models and configurations considered. In this regardyth€ barotropic model has been
found to be much less efficient, taking about 3.5 times as many CPU seconds per f
step. This much poorer performance may be ascribed to the additional number of deg
of freedom which must be advanced in time and to the fact that the divergence correc
term, o', in the RHS of the elliptic height equation changes abruptly at leapfrog rest:
intervals (every tenth step), thus requiring more solver iterations. In contrast, the sc
shallow-water modelssw6, takes only about 1.7 times the CPU time per steptass.

As expected, the vector version of the shallow water modsig, is cheaper still, taking
about 1.6 times the CPU time of the original model described in Stuhne and Peltier |
The fact that these last two figures are comparable, however, suggests that the require
for iterative elliptic inversions at each step does not, in and of itself, necessarily result i
model which isdramaticallyless efficient. Performance would, of course, degrade furthe
if more accuracy (and hence a greater number of iterations) were required, but usually
a few iterations (or even one) per time step are sufficient. This resukighbimodels need
not be much less efficient than theiwl counterparts implies, from our earlier discussion,
that it may be of benefit to consider the implementation of semi-implicit time stepping
either model if it were to be employed as the basis of an actual production code.

We have found, on the basis of the shallow water test set results, that the accurac
our vswb model and the spatial distribution of its manifested numerical errors are bc
comparable to those of therig10242 model of Heikes and Randall [14, 15]. One or the
other produces modestly better results depending upon the particular details of the
being analyzed. In comparing our two shallow water formulations, we have found tt
numerical predictions made witswl models tend to manifest similar quantitative error
measures as those made witkwl models, except in integrations of Charney balance
steady-state flows (where the latter models fare significantly better). The results from
Case 1 and the spatial flow structures exhibited in Test Case 5 and in the simulation
polar vortex erosion all suggest that discretizations of the two different mathematical for
of the shallow-water equations exhibit slightly different “slow manifolds” in the sense
Leith [34]. There is no reason to prefer one or the other on this basis since there is no kn
physical rationale for a particular balance criterion to be imposed. However, for any gi\
discretization, it will, of course, be of benefit to develop a specifically tailored balancii
algorithm which will enable simulations to be initialized in computational steady state
The straightforward inversion of the Poisson problem in Eq. (17) which we employed
cases (except Test Case 7) has clearly proven to be better in this regard in its applicati
vector models. A suitable alternative for the scalar models would require additional eff
in development.

In terms of other comparisons, the scala#l models have shown modestly better enstro.
phy conservation properties, properties which could, no doubt, be further improved un
time-stepping schemes which exploited the conservation equations of flux form govern
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h*andQ. Stuhne and Peltier [1] have already implemented a simple version of such a sch
for the nondivergent barotropic model, and substantially more sophisticated schemes

also be developed. Vector models are, in contrast, potentially extensible to simulate a w
class of nonhydrostatic 3D flows and can, if semi-implicit time-stepping is not used, av
the need to solve elliptic problems at each time step. It would likely benefit applications
our methodology which do require the solution of the Poisson problem to refine this asy
of the numerical structure so as to achieve improved accuracy. The multigrid algorithm
smoother we have employed are by no means optimal for the 2-sphere, and better re
might, no doubt, be obtained with some more sophisticated scheme. From the perspecti
the application of this methodology to three-dimensional problems, however, it is sens
to focus the effort on a solver which is already known to have a direct 3D analogue. Bey:
the elliptic inversion procedure, there are also further improvements which can be m
in the other components of our numerical framework. One might, for instance, refine

numerical differentiation procedure to better take into account the slight local curvature
the sphere between adjacent grid points. As already discussed in Section 3.4, one r
also experiment with alternative means of implementing spatial and temporal filters wh
eliminated some of the deficiencies of our present scheme. We are actively considering t
and other refinements as possible means of improving the methodology. Even as it ste
however, this methodology has been shown to produce competitive results (as comp:s
specifically, with the model of Heikes and Randall [14, 15]).
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