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We describe the implementation of numerical models of shallow water flow on
the surface of the sphere, models which include the nondivergent barotropic limit as
a special case. All of these models are specified in terms of a new grid-point-based
methodology which employs an heirarchy of tesselations derivative of successive
dyadic refinements of the spherical icosahedron. Among the potential advantages of
such methods is theO(n) complexity in operation count that can be achieved for
an n degree of freedom model if multigrid techniques are employed to solve the
associated elliptic problems. Currently prevalent spectral transform models are, in
contrast,O(n2) complex due to the Legendre transform that must be performed to
transform between spectral and grid-point representations of model fields at each
time step. Using the new methodology, we have implemented two different for-
mulations of each of the barotropic and shallow water dynamical systems. In one
formulation, the vector velocity field is directly advanced in time; in the other, time
integration is carried out entirely in terms of scalar quantities (i.e., absolute vorticity
in the barotropic model and, in the more general shallow water model, height and
velocity potential). We describe discretizations of the governing equations in which
all calculations are performed in Cartesian coordinates in local neighbourhoods of
the almost uniform icosahedral grid, a methodology that avoids potential mathemat-
ical and numerical problems associated with the poles in spherical coordinates. A
number of standard numerical tests are performed with the resulting models and the
results employed to compare them with each other and with previously published
results obtained using other methodologies. Initial tests are performed for a standard
suite that now constitutes the generally accepted benchmark for shallow water mod-
els on the sphere. The advantages and the disadvantages of the two shallow water
formulations (vector and scalar) are contrasted and employed to demonstrate that
the new icosahedral methodology is highly competitive with previously suggested
grid-point models. The remaining results which we discuss relate to the process
of erosion of a stratospheric polar vortex by a forced stationary Rossby wave dis-
turbance, a physical problem which has previously been analyzed in detail in sev-
eral well-known spectral transform simulations. It is shown that all of our models
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properly simulate this intensely nonlinear and computationally challenging physical
process. c© 1999 Academic Press

Key Words:shallow water equations; computational fluid dynamics; multigrid
methods; refined icosahedral mesh; spherical domain; vortex erosion.

1. INTRODUCTION

The simulation of hydrodynamic flows in spherical geometry is a problem of computa-
tional fluid dynamics which is of great importance in many areas of physical science. In a
recent paper (Stuhne and Peltier [1]) we addressed this problem and reported results obtained
with a novel grid-point based numerical methodology that is well suited for integration of
the partial differential equations that govern the evolution of such flows. The numerical
framework developed therein was based upon a spatial discretization derived from the reg-
ular icosahedron and employed finite element multigrid methods (see, e.g., Hackbusch [2])
in the solution of the elliptic equation that arose in the nondivergent barotropic dynam-
ical system that was our focus of interest in this initial stage of technical development.
These fundamental building blocks, along with a number of additional algorithms em-
ployed to perform the operations of advection and numerical differentiation, were invoked
to solve the inviscid, nondivergent two-dimensional barotropic vorticity equation (see, e.g.,
Pedlosky [3]). It was thereby demonstrated that the new numerical structure was effective in
solving an important class of highly nonlinear inviscid fluid dynamical problems involving
the cascade of structure to small scales. Specifically, we were able to accurately reproduce
the well-known simulations of Juckes and McIntyre [4], who employed a conventional
spectral transform model (see, e.g., Orszag [5]) to represent the dynamical process involved
in the erosion of a polar vortex by an impinging Rossby wave. The new numerical structure
was also tested by employing it to simulate the process of barotropic instability of a zonal
flow with strong meridional shear and the subharmonic pairing interaction which thereafter
ensues among the individual vortices generated by the primary instability.

The practical importance of the work described in Stuhne and Peltier [1], which we will
herein extend to the significantly more challenging case of shallow water dynamics, lies
primarily in the fact that grid-point models based upon the use of multigrid techniques have
the potential to achieve a dramatic improvement in efficiency over the currently prevalent
spectral transform models. Since this conventional methodology requires the computation
of Legendre transformations between spectral and grid-point space at each time step, it has
an operation count which isO(n2) complex in the number of degrees of freedom,n (see
Orszag [5]). In contrast, grid point models can be designed which are strictlyO(n) complex,
an improvement which has the potential to significantly extend the range of practically
achievable spatial resolutions, since there will clearly be some threshold ofn beyond which
such methods remain viable after spectral transform methods have degraded to the point of
being prohibitive in computational cost. Although this threshold has not yet been reached
in practice, and although there are spectral transform schemes under development which
promise a less dramatic nonlinear degradation of performance inn (see, e.g., Driscoll and
Healy [6]), the rapid growth in the availability of computing resources and the inherently
optimalO(n) complexity of grid-point methods suggests that such methods may soon be
extremely useful, especially for applications requiring the maximum attainable resolution.
The results presented in Stuhne and Peltier [1], for the case of nondivergent barotropic
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dynamics, demonstrate explicitly that the expected optimal algorithmic complexity is, in
fact, achieved in test cases which resolve physical processes that are significantly more
complex than those manifested in the simpler tests to which numerical models are typically
subjected.

Even beyond the theoretically expected improvement in efficiency at high spatial resolu-
tion, there are practical benefits in the use of an entirely grid-point-based methodology. For
example, such methods allow one to avoid the anomalous oscillations which are associated
with Gibbs phenomena in spectral transform models and also provide an inherently more
natural representation for local features such as mountains. Spectral transform models,
moreover, perform key numerical operations in a Gaussian grid-point domain, over which
there is a dramatic spatial inhomogeneity which wastefully over-resolves polar regions (and
can lead to numerical problems if some form of atypical forcing and/or dissipation must
be applied in a particular analysis). This last shortcoming can be ameliorated in spectral
transform models if one employs reduced Gaussian grids (e.g., Hortal and Simmons [7]),
but doing so disrupts the exact calculation of quadratic terms which is one of the key advan-
tageous features of such models. It can be circumvented almost entirely in grid-point-based
methodologies provided that one employs a mesh structure which “tiles” the sphere in an
approximately uniform fashion. In geometric terms, there are, of course, no perfectly uni-
form tesselations of this domain except for the exact spherical projections of the so-called
Platonic solids (i.e., tetrahedra, cubes, octahedra, etc.). As early as the 1960s, Williamson
[8] and Sadournyet al. [9] experimented with nondivergent barotropic models of invis-
cid fluid flow discretized on grids which were derived from the approximately uniform
grid generated by the spherical projection of the regular icosahedron (which is, with 20
sides, the most complex Platonic solid). The nondivergent barotropic model of Stuhne and
Peltier [1] employs a similar grid structure which was originally devised by Baumgardner
and Frederickson [10] in the context of their studies of thermal convection in a three-
dimensional spherical shell at infinite Prandtl number. This particular mesh offers a number
of numerical advantages, most notably by virtue of the fact that successive subdivisions of
the primary icosahedral discretization are performed in a recursive way which facilitates the
application of multigrid methods and allows for the specification of natural finite element
coordinates on spherical triangles. The model described in Stuhne and Peltier [1] invokes a
combination of finite element and finite difference techniques designed specifically for this
grid in such a way as to obtain anO(n) complex hybrid algorithm with which to advance
the solution in time. This methodology represents a very significant improvement over the
early efforts of Williamson [8] and Sadournyet al.[9], which did not incorporate multigrid
techniques as these had yet to be invented.

As the simplest one layer model of fluid flow which supports complex nonlinear dynamics
and a turbulent “cascade,” the nondivergent barotropic model is of considerable physical
interest in and of itself. It is therefore rational to begin the assessment of the applicability
of any body of numerical methodology with analyses based upon it (as Williamson [8],
Sadournyet al. [9], and we ourselves have done). The dynamics, however, derive from the
assumption that divergence and divergence tendency vanish identically. These assumptions
entirely suppress the appearance of fast gravity waves, whose existence, as is well known,
may lead to computational instabilities resulting from temporal aliasing in the numerical
models appropriate for global atmospheric, oceanographic, and astrophysical simulations.
In contrast, shallow water models, which also apply to the evolution of a single layer
of fluid, treat the thickness of this layer as a dynamically varying field and thus admit a
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representative spectrum of linear and nonlinear wave phenomena and of their associated
numerical artifacts (see, e.g., Pedlosky [3]). Consequently, implementation of this more
complex representation of fluid flow has become thede factostandard test to which any
numerical methodology intended for subsequent use in full three-dimensional models on the
sphere must be subjected. For this reason, Williamsonet al. [11] proposed a standard suite
of tests whereby different shallow-water models in spherical geometry might be evaluated
and compared in a variety of physical configurations. Although these tests manifest physical
behavior which is considerably less challenging to resolve than that which was considered
for test purposes with the nondivergent barotropic model in Stuhne and Peltier [1], they
are nevertheless extremely valuable in providing standard points of comparison between
numerical methodologies. It is to be hoped that further tests such as our own might also be
adopted as additional standards which are more completely representative of the full physical
complexity realizable in one-layer hydrodynamic models. In the analyses to follow, we will
both describe and extend the basic numerical techniques employed in the nondivergent
barotropic model of Stuhne and Peltier [1] both to the shallow water simulation of the
complex cases considered therein and to a selection of the standard shallow water tests of
Williamsonet al. [11].

Cullen [12], in one of the earliest examples of work in this area and, more recently, Masuda
and Ohnishi [13] and Heikes and Randall [14, 15] have also described the implementation
of shallow water models in spherical geometry employing grid structures which are related
to the regular icosahedron. All of the grid structures employed by these authors, however,
differ in significant respects from that of Baumgardner and Frederickson [10] which we
have elected to employ. Strictly speaking, Cullen’s [12] mesh structure cannot be said to be
derived from the spherical icosahedron at all, since the basic figure is initially distorted so
as to subdivide the sphere into three latitudinally distinct regions (a subdivision which is
realized only approximately in the Platonic figure). Masuda and Ohnishi [13], on the other
hand, begin with a proper icosahedron, but employ a nonrecursive means of subdividing
spherical triangles to obtain higher resolution grids. Heikes and Randall [14, 15] employ an
icosahedral basic grid and a recursive procedure of dyadic subdivision but apply a “twist” in
such a way as to force the mesh to be symmetric about the equator (arguing that it is desirable
for the numerical representation of idealized flows with cross-equatorial symmetry to retain
this property). Furthermore, these authors discretize the problem in such a way that the grid
is defined in terms of pentagonal and hexagonal Voronoi cells on the sphere rather than
in terms of triangular facets (see, e.g., Augenbaum and Peskin [16]). Whether or not the
“twist” which Heikes and Randall [14, 15] apply to their grid is a desirable feature is largely
an aesthetic issue. Nothing is gained in terms of formal accuracy over the dyadically refined
icosahedron which we employ while there is likely to be some additional complexity of
computer code required to implement the “twisted” grid. Our own inclination is to prefer the
most natural geometrical and logical structure delivered by the Platonic solid itself and to
treat the degree of cross-equatorial asymmetry in an ideally symmetric flow as an indication
of numerical error which might be camouflaged if symmetry were imposed. In any event,
physically realized flows in nature never manifest precise cross-equatorial symmetry.

Of greater significance than these details of the icosahedron-based grid structure is the
choice of the mathematical form of the shallow-water equations to be employed and the
discrete approximation of them on the appropriate grid. Various formulations of the shallow-
water dynamical system were, in fact, presented and compared in Williamsonet al.[11]. Of
the icosahedron-based models, those described by Masuda and Ohnishi [13] and Heikes and
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Randall [14, 15] employ the streamfunction, velocity potential formulation of the equations.
Layer thickness,h∗, and absolute vorticity,η, both evolve in time according to simple
conservation laws of flux form, namely (with8 representing eitherh∗ or η),

∂8

∂t
+∇ · (u8) = 0, (1)

while the horizontal divergence of flow velocity,δ=∇ · u, is governed by a similar but
somewhat more complex equation. The system is dynamically closed because the stream-
function,ψ , and velocity potential,χ , may be obtained, respectively, fromη andδ through
the solution of associated elliptic problems and may, in turn, be employed in thea posteriori
diagnosis of a numerical approximation foru (see below). This is simply the shallow-water
extension of the form of the nondivergent barotropic equation employed by Williamson
[8], Sadournyet al. [9], and Stuhne and Peltier [1] (we will continue to employ the symbol
Q≡ η to denote the absolute vorticity in what follows). However, in discretizing the nondi-
vergent barotropic and full shallow-water equations, Williamson [8], Sadourneyet al. [9],
Masuda and Ohnishi [13], and Heikes and Randall [14, 15] all rely upon the fact that scalar
advection in two dimensions may be cast in terms of specific Jacobian and flux operators
in a way which allows one to avoid the explicit computation of the velocity vector,u, in
the course of a numerical advection step. It is therefore unclear how any of these models
would incorporate the additional numerical operations required in fully three-dimensional
flow models. Furthermore, even in 2D integrations, these methods estimate a particular
term in the shallow-water divergence equation by applying discrete differential operators
iteratively (rather than by invoking a proper Taylor series-based stencil), a procedure which
could potentially lead to difficulties. The basic body of numerical methodology developed
and invoked in Stuhne and Peltier [1], in contrast, is considerably more versatile in these
respects since computational stencils are derived in grid-point space under assumptions
which allow for the consistent discretization of much more general terms. A similar ap-
proximation technique was subsequently derived by Swarztrauberet al. [17] and referred
to as the “Cartesian method.”

Considering further the issue of the extension of a shallow-water model to the case of fully
three-dimensional flow, there is a difficulty inherent in the use of entirely scalar prognostic
variables as in the streamfunction-velocity potential formulation. It is true that atmospheric
models generally treat the vertical velocity as an independent component to be diagnosed
according to the hydrostatic balance relation, thus allowing for scalar variables to be re-
tained in the representation of the horizontal flow (see, e.g., Bourke [18] and Hoskins and
Simmons [19]). There are, however, significant geophysical phenomena, particularly in the
vicinity of the equator, for which an inherently nonhydrostatic representation is required
(see DeVerdi`ere and Schopp [20]). Under such conditions, the mathematical decomposition
of tangential velocity into two scalar fields, where possible at all, becomes considerably
more complex. Shallow-water models based upon a full primitive variable vector formula-
tion will, in contrast, generalize to these cases in a relatively straightforward way. Of the
shallow water models mentioned, the one developed by Cullen [12] utilizes this formula-
tion, which can, however, give rise to its own problems. Most notably, due to the underlying
curvature of the spherical geometry, the advective form of the shallow water dynamical
system includes metric terms which diverge at the singularities of whatever coordinate sys-
tem is chosen (usually spherical polar coordinates). This introduces pole problems above
and beyond those that would be associated with grid spacing and may account for some of
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the numerical difficulties mentioned by Cullen [12] and which have prevented his method-
ology from gaining wider acceptance despite its being based upon the use of an almost
homogeneous grid. As Cullen [12] has also discussed, a further problem may lie in the
fact that first-order finite elements were employed in the discretization of the equations,
which is a very low-accuracy spatial approximation. The methods formulated in Stuhne
and Peltier [1] avoid the latter difficulty entirely by invoking a second-order spatial Taylor
series approximation. Moreover, when combined with the constrained three-dimensional
formulation of the shallow-water equations due to Cˆoté [21] (see below), our framework
can accomodate a discretization in which the velocity,u, is integrated without requiring
the computation of metric terms. The only evident disadvantage of adopting a constrained
velocity formulation is the additional computer memory required to store a mathematically
superfluous third velocity component in shallow-water dynamics. This is, however, not a
problem on modern computers, given the large increases of available memory that have
occurred as memory cost has dramatically fallen.

As may be inferred on the basis of the above commentary, the basic body of numerical
methodology originally applied by Stuhne and Peltier [1] to nondivergent barotropic dy-
namics is sufficiently versatile to enable us to implement shallow-water models in spherical
geometry which are based on either scalar or vector prognostic variables. One can, as we
will discuss, also devise a vector version of the nondivergent barotropic model described in
Stuhne and Peltier [1], which is, like the nondivergent barotropic models of Williamson [8]
and Sadourneyet al. [9], based on the scalar advection of absolute vorticity. We therefore
have effective numerical means at our disposal of comparing the relative merits of vector
and scalar formulations of a given one-layer model as well as the behaviours of the non-
divergent barotropic and full shallow-water one-layer representations of the same physical
system (it being expected that the former should be recovered as a limit of the latter under
appropriate scaling conditions). The main objective of this study, and its primary novelty,
is in addressing these issues in the physical context of cases presented in Stuhne and Peltier
[1] as well as in the standard test set of Williamsonet al. [11]. As will be evident from our
discussion, although there has been significant attention in the recent literature to scalar
shallow-water models on icosahedral grids, little consideration has been given to the al-
ternative vector formulations which are realizable on the same mesh. The derivation of a
vector-based shallow-water equations model with our earlier local approximation methods
and its application to problems with significant dynamics is therefore something of a nov-
elty in and of itself. As we took pains to stress in Stuhne and Peltier [1], our own efforts
are not, at the present stage, intended either to be competitive with existing production
models, based upon the spectral transform methodology, or to represent implementations
of any of the possible alternative formulations of shallow water or nondivergent barotropic
dynamics with optimized algorithmic subcomponents. What we do aim to establish, rather,
is an objective basis for comparing these alternatives and for ascertaining the most fruitful
avenues for further development. This being said, however, it will be seen that the results
achieved can be quite competitive with those hitherto published for other icosahedral grid-
point models, a fact which will be seen to fully justify the fundamental principles upon
which our approach is based.

In Section 2 of what follows, we discuss both the shallow water and nondivergent
barotropic dynamical systems and the initial conditions to be employed in their integra-
tion in a way which develops several of the themes mentioned in this Introduction in greater
technical detail. In Section 3, we will briefly review the various numerical methods originally



SHALLOW WATER MODELS 29

developed in Stuhne and Peltier [1] and discuss the extensions required for application to the
more general case of shallow water dynamics. In Sections 4 and 5 we present and discuss
the results of analyses obtained with the new numerical methodology applied, respectively,
to the standard test cases of Williamsonet al. [11] and to the more challenging problem of
Rossby wave-induced vortex erosion. Concluding remarks are offered in Section 6.

2. MODEL EQUATIONS

The basic structure of the physical problem that is analyzed in shallow-water dynamics
is that of horizontal flow within a layer of fluid having a dynamically varying height and a
static underlying topography. The mathematical formulation of the problem may therefore
be cast in terms of a two-component vector velocity field,(u1, u2), and a scalar height
field, h= h∗ + hs, in which h∗ is the dynamically varying component andhs is the static
topography. On the sphere, of course, the fluid layer height and the topography may be
thought of as constituting perturbations to a closed surface whose curvature requires that
the general velocity vector,u= u1e1+ u2e2, be expanded in terms of a basis,{e1(x), e2(x)},
which varies with position. For practically useful coordinate systems (e.g., spherical polar
coordinates) the resulting dynamical equations include Christoffel symbols which diverge
at the singularities of the mapping (e.g., at the poles). Fortunately, there are at least two
relatively straightforward schemes whereby the potential problems resulting from this may
be obviated, one of which preserves the vector character of the dynamics, while the other
transforms the flow to one described in terms of the evolution of scalar fields.

2.1. Vector Form

Côté [21] has described a formulation in which shallow-water flow on the sphere is
treated as a constrained instance of a general 3D flow. Specifically, the velocity vector field
is expanded in terms of three components,ux, uy, anduz, such that

u = uxex + uyey + uzez, (2)

whereex, ey, andez are (constant) unit vectors along the Cartesianx-, y-, andz-axes. This
requires that an extra field be introduced, but it eliminates all singularities and, furthermore,
it will be seen, all asymmetries in the roles played by the components ofu in the vector
evolution equation. In terms of the three componentsux, uy, anduz, this evolution equation
is, of course, underdetermined on the 2D spherical surface and requires that an additional
constraint be appropriately imposed so as to ensure that

x · u = xux + yuy + zuz = 0 (3)

for all x and for all time. When nondimensionalized on the rotating sphere, the resulting
shallow-water dynamical system, as originally analyzed by Cˆoté, takes the form

∂u
∂t
+ (u · ∇)u+ R−1

0 (z+ F)x× u = −F−2
0 ∇h− (u · u)x (4)

∂h∗

∂t
+∇ · (h∗u) = 0, (5)
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wherein the last term of Eq. (4) is a centripetal force whose influence is such as to keep
fluid particles confined to the unit spherical surface defined by

x · x = x2+ y2+ z2 = 1. (6)

In addition to variables already defined, the system (4)–(5) includes the nondimensional
external scaling parametersR0 (a Rossby number) andF0 (a Froude number), which are
defined, respectively, as

R0 = U

2Ä0rs
(7)

and

F0 = U√
gH

. (8)

In these definitions,rs andÄ0 are the radius and angular frequency of the rotating sphere,g
is the surface gravitational acceleration,U is a characteristic velocity in the rotating frame,
and H is a characteristic fluid layer depth. If one imposes the requirement thatU be of a
magnitude such as to make the nondimensionalu field O(1) in amplitude in the rotating
frame (and thus essentially definesU in terms of the global kinetic energy of the flow), then
the parameterR0 directly constrains the structure of admissible dynamical fields. However,
if, as is the case in the analyses to be considered in this study, the exact form of the velocity
field is specifieda priori, thenR0 plays no rôle in the physical definition of the problem and
can simply be set in such a way as to put the nondimensional equations into a convenient
form. For present purposes, it will suffice to chooseU = 2Ä0rs (i.e., R0= 1) and then to
consider the dynamics to be controlled entirely by a new Froude number

F0 = 2Ä0rs√
gH

. (9)

In terms of physical applications, it is interesting to observe that, provided the nondimen-
sional parameters are suitably re-interpreted, Eqs. (4) and (5) have a form equivalent to
the 2D compressible Euler equations. This fact has been exploited in drawing analogies
between these two otherwise dissimilar physical systems (e.g., in Ford’s [22] application
of Lighthill’s [23] aerodynamic sound generation theory to gravity waves).

It should be noted that thez-coordinate that appears explicitly in Eq. (4) corresponds
to the latitudinal variation of the Coriolis parameter (cosθ in terms of colatitude). Some
of the numerical tests that we will perform call for an angular displacement between the
rotational and computational poles and for these cases the appropriate transformation is
easily obtained. The functionF which perturbsz in Eq. (4) represents a quasi-topographic
forcing that we will, for some purposes, take to be of the form

F(x, t) = 0.3x A(t)B(cos−1 z)√
x2+ y2

, (10)

which is equivalent to that assumed in the analyses of Juckes and McIntyre [4]. The forms
of the functionsA andB are illustrated in Stuhne and Peltier [1], wherein we described the
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application of a nondivergent barotropic version of the model to the reproduction of Juckes
and McIntyre’s results. Further comparisons pertaining to this test case will be presented
in what follows, all of which will be based upon the use of the same form forF . For the
purposes of other analyses, we will setF = 0.

2.2. Scalar Form

By taking the divergence and curl of the momentum equation, the system (4)–(5) may
be recast into the equivalent form,

∇2

(
∂χ

∂t
+ F−2

0 h+ 1

2
u · u

)
= (Q− z− F)Q− x · (u×∇Q) (11)

∂Q

∂t
= −∇ · (Qu) (12)

∂h∗

∂t
= −∇ · (h∗u), (13)

in which the velocity vector field may be obtained in terms of a streamfunction,ψ , and a
velocity potential,χ , by means of the relation

u = ∇ × (xψ)+∇χ. (14)

The absolute vorticity,Q, evolves according to a conservation law of flux form (Eq. (12)),
of the same form as that which governsh∗, as previously mentioned. The time evolution of
these two quantities may therefore be determined on the basis of a suitable advection scheme
and the streamfunction,ψ , that is required to determine the velocity in such a scheme, may
be inferred from the absolute vorticity by inverting the Poisson equation,

∇2ψ = −Q+ z+ F. (15)

In this formulation of the shallow water model the dynamics are thus described entirely in
terms of the evolution of the scalar quantities,Q, h∗, andχ , thus providing an alternative
means of avoiding problems associated with the underlying curvature of spherical geometry
(there being no Christoffel symbols arising in spatial derivatives of scalars).

By inverting the Laplacian operator in Eq. (11) to directly obtain the time-tendency of
the velocity potential,∂χ/∂t , one may avoid having to compute any numerical deriva-
tives higher than first order. In contrast, evolving the divergence,D=∇2χ , as is done,
for instance, by Heikes and Randall [14, 15], necessitates the numerical estimation of the
second-order operator∇2 ( 1

2u · u)after a first-order numerical derivative (as per Eq. (14)) has
already been invoked in the calculation ofu. The effective differentiation stencil therefore
derives from multiple passes over the data, rather than from a proper Taylor series expansion
optimized to the local grid structure. Such a device (which we also use to approximate the
∇6 hyperdiffusion operator in Section 3.4 below) can potentially give rise to distortions and
should, if possible, be avoided in the discretization of the key dynamical terms in a model.
The algorithm implied by the form of Eqs. (11)–(13) may allow one to avoid this potential
difficulty, but not in all circumstances. Most notably, the advantage gained does not neces-
sarily continue to apply to time-stepping schemes deriving from the so-calledsemi-implicit
formulation in which the height field is expanded about an arbitrary reference in such a
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way as to minimize the aliasing of fast, grid-scale gravity wave propagation by the choice
of time step (see Kwizak and Robert [24]; Robertet al. [25]). This is the case because,
in contradistinction to explicit schemes, thei + 1 time level of a semi-implicitly defined
field8 cannot be directly determined through a simple diagnosis of∂8/∂t at previous time
levelsi, i − 1, etc.

Semi-implicit schemes may be devised for both the vector and the scalar formulations of
the shallow water equation system and theoretically allow for time steps to be several times
larger than in explicit time-stepping schemes (the latter being limited by the phase speed of
effectively numerical gravity waves rather than merely by the CFL criterion on advection
velocity). Greater, although still not unconditional, numerical stability is thus achieved at the
cost of distorting the physics at scales close to that of the grid. The implementation of these
methods, moreover, generally entails the solution of elliptic equations of a form similar
to those which must be solved in the scalar icosahedral models of Masuda and Ohnishi
[13] and Heikes and Randall [14, 15], as well as in our Eqs. (11)–(13). Consequently,
it is likely that these models, which must already bear the computational cost of elliptic
inversions, would, on the whole, be accelerated by semi-implicit methods. This is not,
however, necessarily true of our vector shallow-water model, since, as is clear from our
Eqs. (4)–(5), direct integration of the primitive variable form of the shallow-water equations
using the explicit technique should be a relatively efficient numerical operation on any grid.
The vector-explicit scheme may therefore allow one to reproduce a simulation performed
using a semi-implicit vector model (or any scalar model) at comparable operation count
even though significantly smaller time steps must be employed. In any case, it is of benefit
to establish a basis for comparison by first implementing new numerical discretizations
in fully explicit mode, since the direct resolution of relevant physical processes in this
way precludes the possibility that aphysical distortions associated with an implicit scheme
might produce misleading results. The previous models cited above all employ explicit
time-stepping schemes and we will adhere to this precedent.

Therefore, we will focus in the present paper on the implementation and comparison of
various explicit formulations of shallow-water dynamics. Aside from its modifying the typ-
ical sequence of numerical operations, one of these formulations, as expressed in Eqs. (11)–
(13), represents the same basic process of scalar integration and elliptic inversion which
has been invoked in the previously cited studies. It is of interest, therefore, to consider
how results obtained under this new discretization compare with results from other scalar
shallow-water models, as well as with results from a new vector shallow-water model which
we have also devised on the basis of the same numerical techniques. Given the versatility
of our basic methods, any of a number of such models can be practically implemented with
them and possibly extended to the simulation of full 3D flows (our vector formulation,
indeed, is already derived through the constraint of a 3D flow to the surface). In practical
terms, the only sure means of assessing the relative merits of the alternative formulations is
through the direct comparison of the results obtained by applying them to specific problems
of interest.

2.3. The Nondivergent Barotropic Model

Assuming the flow to be nondivergent for all time (i.e., settingD=∇2χ ≡ 0) yields what
is commonly referred to as the (nondivergent) barotropic model (see, e.g., Pedlosky [3]),
which is, in dynamical terms, the simplest possible representation of one-layer flow. In this
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limit, χ is everywhere an undetermined (and irrelevant) constant and Eq. (14) foru assumes
the simpler form,

u = ∇ × (xψ). (16)

Together with theQ-advection equation (12) and the Poisson equation (15), this defines a
closed scalar model based solely upon the dynamical process of absolute vorticity advection
in which the height field,h, need never be explicitly considered. The implementation of this
model using the new numerical framework was described in detail in Stuhne and Peltier [1].
Where it is required,h can be diagnosed from the other fields if one imposes the balance
condition of Charney [26], substituting∂χ/∂t = 0 into Eq. (11), and thereby obtaining

h = H0+ F2
0

{
−1

2
u · u+∇−2[(Q− z− F)Q− x · (u×∇Q)]

}
, (17)

in which∇−2 denotes the inverse Laplacian operator andH0 is an undetermined constant.
Some value of the constantH0 must be supplied as an external parameter, but it is to be
expected ona priori grounds thatH0∼ 1, in order to maintain consistency with the choice
of height scaleH in the determination of the Froude number in Eq. (9). For nondivergent
u, the resultingh is the balanced height field about which small amplitude shallow-water
fluctuations would propagate as gravity waves. Gravity wave effects are, of course, sup-
pressed in the nondivergent barotropic model, wherein the variation ofF0 has nodynamical
implications. Substitution of the expression (17) forh into the height field evolution equa-
tion (13) will establish that nondivergent barotropic dynamics may be realized as a limiting
case of shallow water dynamics whenF0 is small (corresponding to the limit of infinitely
fast gravity wave propagation).

If we take the divergence of Eq. (4) for a nondivergent barotropic flow, we derive an
alternative expression, namely

∇2
(
F−2

0 h
) = −∇ · {(u · ∇) u+ R−1

0 (z+ F) x× u+ (u · u) x
}
, (18)

by which the weighted balanced height field,F−2
0 h, is diagnosable directly fromu at any

time level. In combination with the vector momentum equation (4), this defines a vector
formulation of the nondivergent barotropic model (recognizing that theF0 value and the
constant background height are irrelevant). We therefore have both vector and scalar forms
of each of the shallow water and nondivergent barotropic dynamical systems. These will be
of use to us in making a variety of intercomparisons to be described in what follows.

2.4. Initial Conditions

In most of the cases to be discussed, the initial form of the flow will be taken to be both
nondivergent and balanced and therefore fully specified in terms of an initial barotropic
potential vorticity field,Q0(x), from which theu0 field may be obtained by means of
Eqs. (15) and (16). The corresponding balanced height,h0, may then be derived from
Eq. (17) with a suitable choice ofH0. For such initial conditions, the various shallow-water
and nondivergent barotropic formulations which we have discussed may be initialized so
as to have numerically identicalu andh fields. They will, of course, diverge in the course
of their subsequent evolution and it will be of interest to us to consider in this way the
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comparative behaviours of the different models which can be devised within our basic
numerical framework. In one instance, a simulation must be initialized with a more general
divergent flow and in this case (which will only be analyzed using the vector form of the
shallow water equations) we simply set the fieldsu0 andh0 according to the prescribed
initial conditions.

3. NUMERICAL METHODS

Many of the details of the spatial discretization, data structures, and numerical algorithms
required to perform the numerical operations relevant to this study have already been dis-
cussed in some detail in Stuhne and Peltier [1]. In this section, we will therefore limit
the discussion to providing a brief summary of the main ingredients previously described
and for the most part will focus on the extensions of this work required in the present
shallow-water context.

3.1. Grid Structure

In terms of the mathematical notation developed by Stuhne and Peltier [1], the definition of
the grid structure of Baumgardner and Frederickson [10] proceeds from the basic spherical
icosahedron, or level 0 grid, as follows. The Platonic figure consists of 20 identical spherical
triangles, each of which we denote byT 0

i, j,k. Referenced by the three indicesi , j , andk
(whose order of occurrence is unimportant in our notation) are three points,P0

i ,P0
j , andP0

k ,
which define the vertices of the triangle. The boundary of the triangular region,∂T 0

i, j,k, is
defined by three arcs,A0

i, j ,A0
i,k, andA0

j,k, which are the geodesic curves connecting pairs
of vertices. Adyadic refinementfrom grid levell to grid levell + 1 entails the subdivision
of each arc in such a way as to enhance the number of points in the finer grid by the
number of arcs in the coarser one. Each triangle of the levell grid is, moreover, subdivided
into four subtriangles by additional geodesic arcs which link these bisectors. Starting from
the spherical icosahedron as grid level 0, this process of dyadic subdivision recursively
determines a mesh at arbitrary levell which has 10n2+ 2 grid points, wheren= 2l (see
Stuhne and Peltier [1]). The hierarchy of grids thus generated is best illustrated graphically,
and in Fig. 1 we therefore show the mesh structures of grid levels 0 through 6 that result
from the above described construction. For the purpose of organizing the data in computer
memory, it is convenient to logically subdivide the basic icosahedron into 10 diamonds
consisting of pairs of facets. One can thus arrange the points of grid levell into 10n× n
logical square arrays and two outliers at the north and south poles. In order to further
facilitate data manipulation, aFORTRAN array of dimensions (0 :n+ 1, 0 :n+ 1, 10) is used
to index each field, extra edge cells for a given diamond being employed to store copies of
values from neighbouring diamonds (values which are updated at appropriate points in the
computation). The values at northern and southern polar nodes are stored in the respective
locations (0, 1, 1) and (0, 1, 6). The exact geometric layout of the data is fully described in
Stuhne and Peltier [1].

3.2. Numerical Spatial Derivatives

Denoting byxl
i the 3D position vector at pointP l

i of grid level l and byF l
i an arbitrary

scalar or vector field evaluated at that point, our numerical methodology frequently requires
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FIG. 1. Dyadically refined spherical icosahedral mesh structures at grid levels 0 through 6.

the explicit estimation of (DF)l
i , whereD is a continuous differential operator acting upon

the undiscretized fieldF(x). The general form of an approximation for(DF)li may be
written as

(DF)li ≈
∑

j

Dl
i j

(
F l

j − F l
i

)
, (19)

in whichDl
i j is a sparse matrix or operator array which is nonzero only fori , j such that

|xl
j − xl

i | is small. On the icosahedral grid, it is both natural and practical to consider a
neighbourhood of each pointP l

i consisting of the point and immediate neighbours,P l
j ,

linked to it by geodesic arcsAl
i, j . A local approximation toF(x) on grid levell in the

neighbourhood ofP l
i , which we denote byF̃ l

i (x), is then assumed to take the second-order
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form

F̃ l
i (x) = F l

i + F̃ l
i,1s+ F̃ l

i,2t + 1

2
F̃ l

i,3s2+ F̃ l
i,4st+ 1

2
F̃ l

i,5t2, (20)

in which

s= vl
i ·
(
x− xl

i

)
, t = wl

i ·
(
x− xl

i

)
(21)

are 2D affine coordinates on the tangent plane atP l
i . The 3D vectorsvl

i andwl
i are defined

as

vl
i =

bl
i × xl

i(
bl

i × xl
i

) · al
i

, wl
i =

al
i × xl

i(
al

i × xl
i

) · bl
i

, (22)

in which al
i andbl

i are the basis vectors of the local tangential coordinate system and are
given by the expressions

al
i = xl

j − xl
i

(
xl

i · xl
j

)
, bl

i = xl
k − xl

i

(
xl

i · xl
k

)
, (23)

whereinxl
j andxl

k are the coordinates of two neighbouring points chosen such thatP l
i , P l

j ,
andP l

k are not all on the same geodesic. From these formulae, it follows (see Stuhne and
Peltier [1]) that the gradient and Laplacian of the local approximation may be obtained as

∇F̃ l
i (x) = F̃ l

i,1vl
i + F̃ l

i,2wl
i (24)

and

∇2F̃ l
i (x) = F̃ l

i,3

∣∣vl
i

∣∣2+ 2F̃ l
i,4vl

i · wl
i + F̃ l

i,5

∣∣vl
i

∣∣2. (25)

The five coefficientsF̃ l
i,α must be linearly related toF l

j −F l
i for a valid approximation to

result which effectively determines theDl
i j of Eq. (19). However, since all points but those

lying on the level-0 icosahedron have six (rather than five) neighbours, theF̃ l
i,α values are

generally overdetermined. We therefore obtain them by minimizing the quantity

1 ≡
∑

j

∥∥F̃ l
i

(
xl

j

)− F l
j

∥∥2
, (26)

which results in the linear problem discussed in Stuhne and Peltier [1].
When spatially discretized according to this procedure, the vector form of the shallow-

water evolution equations given by Eqs. (4)–(5) may be written as

∂Vl
i

∂t
= (−Rl

i ,−Sl
i

)
, (27)

in which the four-component vectorVl
i is defined as(ul

i , h
∗l
i ) and theRl

i andSl
i components

in the RHS are given, respectively, by

Rl
i =

∑
j

[(
ul

i · ∇ l
i j

)
ul

j + F−2
0 ∇ l

i j h
l
j

]+ R−1
0

(
zl

i + Fl
i

)
xl

i × ul
i +
(
ul

i · ul
i

)
xl

i , (28)
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and

Sl
i =

∑
j

[
ul

i · ∇ l
i j h
∗l
j + h∗li ∇ l

i j · ul
j

]
. (29)

The spatially discretized forms of the scalar evolution equations (11)–(13) take the form

∂Wl
i

∂t
=
(
−F−2

0 hl
i −

1

2
ul

i · ul
i +3l

i , T
l
i [Q], Tl

i [h∗]
)
, (30)

in which the three-component vectorWl
i corresponds to(χ l

i , Ql
i , h
∗l
i ),3

l
i is the evaluation

at positionxl
i of the field satisfying

∇23 = (Q− z− F)Q− x · (u×∇Q), (31)

andTl
i [ · ] generically denotes the discretization

Tl
i [8] ≡ −

∑
j

[
ul

i · ∇ l
i j8

l
j +8l

i (∇2)li j χ
l
j

]
. (32)

In Eqs. (30) and (32),ul
i are determined by the discrete form of Eq. (14), namely

ul
i =

∑
j

(−xl
i ×∇ l

i jψ
l
j +∇ l

i j χ
l
j

)
. (33)

3.3. Laplacian Inversion

In the solution of Eqs. (15), (18), and (31), it is required that we obtain numerical solutions
to Poisson problems with right-hand sides whose values at positionsxl

i areρl
i . In these three

equations,ρl
i values are computed, respectively, as

ρl
i = −Ql

i + zl
i + Fl

i (34)

ρl
i = −

3∑
α=1

3∑
β=1

{∑
j,k

(
∂

∂xα

)l

i j

(
∂

∂xβ

)l

ik

ul
α j u

l
βk +

∑
j

ul
αi

(
∂2

∂xα∂xβ

)l

i j

ul
β j

}

−
∑

j

∇ l
i j ·
[(

zl
j + Fl

j

)
xl

j × ul
j +
(
ul

j · ul
j

)
xl

j

]+ ρ∗li (35)

ρl
i =

(
Ql

i − zl
i − Fl

i

)
Ql

i −
∑

j

xl
i ·
(
ul

i ×∇ l
i j Ql

j

)
. (36)

In Eq. (35), we have introduced(ul
1i , u

l
2i , u

l
3i ) as the components of the vectorul

i , as well as
an additional term,ρ∗li , which will be specified (see below) so as to cancel the generation of
local divergence in the vector barotropic model. The matrices(∂/∂xα)li j and(∂2/∂xα∂xβ)li j
may be obtained by exactly the same procedure as that employed to obtain the discrete
operators∇ l

i j and(∇2)li j (see the previous subsection and Stuhne and Peltier [1]). However,
the Poisson problem itself isnotdiscretized according to this procedure. We treat it, rather,
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in terms of a finite element Galerkin procedure (see, e.g., Beckeret al.[27]), which results,
at any grid levell , in the discrete equation system∑

j

Sl
i, j9

l
j = bl

i , (37)

in which9 l
j is the solution to be obtained (ψ l

i , h
l
i , and3l

i in the respective Eqs. (15), (18),
and (31)),Sl

i, j is the finite element density matrix, and the RHS,bl
i , is ρl

i , weighted by the
finite element mass matrix,Ml

i, j ; i.e.,

bl
i ≡

∑
j

Ml
i, jρ

l
j . (38)

For the details of howSl
i, j andMl

i j are obtained for the spherical icosahedral grid, the reader
is referred to Stuhne and Peltier [1]. The only nonstandard aspect of the analysis which needs
to be mentioned here is the fact that we employ the basis functions and recurrence relations
which were specifically derived by Baumgardner and Frederickson [10] for this grid and
which have a number of favourable numerical characteristics already discussed.

The solution of Eq. (37) is carried out by means of the multigrid algorithm of Karpik
and Peltier [28] which was also specifically designed for the icosahedral grid. In Stuhne
and Peltier [1] we describe and denote byMG2DS the implementation of a 2D version of
this algorithm, the original version of which, denoted byMG3DS, applied to a 3D shell
of finite thickness. The basic operation of theMGxDS multigrid algorithms invokes the
simple sawtooth restriction–prolongation cycle (see Hackbusch [2]) and may be represented
abstractly in the form of a recursive specification for an inverse operator for Eq. (37) which
may be applied iteratively at levell :

L−1,l
{

bl
i

} = {(S0
i, j

)−1
bl

j , l = 0

S l
(
bl

i

) ◦ P l−1 ◦ L−1,l−1 ◦ Rl
{

bl
i

}
, l 6= 0.

(39)

In the above, the restriction and prolongation operators,Rl andP l , appropriately transform
the finite element representation of the RHS at levell to the respective levelsl − 1 andl + 1.
In the 2D case, the RHS-dependent operator,S l (bl

i ), is the diagonal component of the line
Jacobi mass lumped smoothing operator of Karpik and Peltier [28]. Its specific form, along
with other details of the multigrid algorithm, is provided in Stuhne and Peltier [1].

3.4. Time Stepping

In Stuhne and Peltier [1] we described and compared simulations in which the time-
stepping was carried out either by means of a Lax–Wendroff advection scheme on the
icosahedral grid or by means of a straightforward leapfrog time-stepping scheme. The Lax–
Wendroff scheme (see Lax and Wendroff [29]) invokes a special discretization of equations
of the type of (1) which was found, in the barotropic model of Stuhne and Peltier [1], to
exhibit a greater degree of numerical stability, but somewhat poorer energy conservation
characteristics. In the case of shallow-water dynamics, the divergence equation (11) is not
in flux form and must consequently be handled by some alternative means of advection.
We therefore consider in this study only leapfrog time-stepping under which the temporal
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discretizations of the evolution equations (27) and (30) forVl
i andWl

i take the generic form

Al
i (t +1t) = Al

i (t −1t)+ 21tNl
i [A(t)], (40)

in which Al
i (t) is the appropriate three- or four-component vector at (discrete) timet , and

we define

Nl
i [A(t)] ≡ RHSl

i [A(t)] + ν
∑
p,q,r

(∇2)li p(∇2)lpq(∇2)lqr A
l
r (t), (41)

whereRHSl
i [A(t)] denotes the evaluation of the RHS of Eq. (27) or (30) at that time, and

the summation term represents a numerical approximation to a∇6 hyperviscosity term
with parametric coefficientν. This filtering term is usually needed to suppress numerical
instabilities arising from grid-scale noise and computational waves. The familiar time-
splitting instability of the leapfrog scheme (see, e.g., Haltiner [30]) has been eliminated by
inserting, at every tenth time step, a “restart” step of the form

Al
i

(
t + 1t

2

)
= 1

2

(
Al

i (t)+ Al
i (t −1t)

)+1tNl
i [A(t)] (42)

Al
i (t +1t) = Al

i (t)+1tNl
i

[
A
(

t + 1t

2

)]
, (43)

which is an Euler backward step (op. cit.) with an additional averaging between thet and
t −1t time levels. These implementations of spatial and temporal filters will be seen to be
adequate for purposes of this study, but they suffer from some deficiencies. The application
of the high-order hyperdiffusion operator,∇6= (∇2)3, can itself introduce aν-dependent
restriction upon the Courant number beyond the standard CFL criterion. This is clearly
not desirable, and we are investigating possible improvements, such as might be achieved
with time-lagged dissipation operators (see Browninget al. [31]). Even as the methods
currently stand, however, they are by no means unique in exhibiting such a shortcoming.
For instance, Heikes and Randall [14] report a similar time step restriction tied to the
occurrence of the Laplacian operator in their discretized evolution equations. Temporal
filtering in our methodology could also potentially be improved with the application of
alternative techniques (e.g., Asselin [32]).

Two additional points require mention in relation to the time-stepping scheme. First, the
underdetermined initial conditions of the discrete equation (40) may be fully specified by
taking a “restart” step of the form (42)–(43), while assuming

Al
i (−1t) = Al

i (0)−1tNl
i [A(0)]. (44)

Second, in order to inhibit the accumulation of divergence in the vector barotropic model,
we set theρ∗li term in Eq. (35) as

ρ∗li (t) =



21t−1∑
j ∇ l

i j · ul
j (0), if t = 0,

1t−1∑
j ∇ l

i j · ul
j

(
t − 1t

2

)
, if t = (10M + 1

2

)
1t,

(21t)−1∑
j

(∇ l
i j · ul

j (t)+∇ l
i j · ul

j (t −1t)
)
, if t = 10(M + 1)1t,

(21t)−1∑
j ∇ l

i j · ul
j (t −1t), otherwise,

(45)

in which M ≥ 0 is an integer.
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3.5. Surface Integrals and Invariants

In the analysis of the test cases of Williamsonet al. [11] and for the purpose of other
tests, it is necessary to estimate global surface integrals of the form

I (h) = 1

4π

∫ 2π

0

∫ π/2

−π/2
h(λ, θ) cosθ dθ dλ (46)

(in which we use the symbols of Williamsonet al. [11]). We have found, for the case of
our numerical methodology, that good results are efficiently obtained if we estimate such
integrals as simple averages over points on a given grid levell ; i.e.,

I (h) ≈ 1

10n2+ 2

∑
i

hl
i , (47)

where, as before,n= 2l . The accuracy of this estimate is only weakly compromised by the
slight differences between the areas of individual spherical polygonal cells that exist at a
given level of resolution.

Three important positive-definite global invariants of the shallow water dynamical sys-
tem are the surface integrals ofh∗ (mass),12h∗u · u+ (h2− h2

s)/(2F2
0 ) (total energy), and

Q2/(2h∗) (potential enstrophy). The corresponding barotropic values for total energy and
potential enstrophy are simply the surface integrals of1

2u · u and 1
2 Q2, respectively. For

these invariants, one defines normalized “conservation-violations” at timet as

Ii (ξ(t)) = I (ξ(x, t))− I (ξ(x, 0))
I (ξ(x, 0))

(48)

(see Williamsonet al. [11]).
For the test cases of Williamsonet al. [11], comparison must be made with analytical

solutions of the shallow-water equations expressed in terms of the three fieldshT (λ, θ, t),
uT (λ, θ, t), andvT (λ, θ, t) where the latter two are the 2D velocity components in the
spherical polar coordinate basis. Using the definitions of Williamsonet al. [11], it is a
simple matter to compute thel1, l2, andl∞ errors in theh andu fields predicted by our
icosahedral model if we define, at positionxl

i , the fields:

u =
(
ez× xl

i

) · ul
i(

xl
i

)2+ (yl
i

)2 (49)

v =
[
ez− xl

i

(
ez · xl

i

)] · ul
i(

xl
i

)2+ (yl
i

)2 . (50)

The contribution to the error of the north and south polar points is taken to be zero since
the basis vectors may be chosen arbitrarily there.

3.6. Nomenclature

For brevity in what follows, we will introduce a simple convention for naming the various
numerical models which result from the discretizations outlined in this section. Barotropic
models will be referred to asxbrl , in whichl is the grid level number andx isv for a vector
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model ands for a scalar model. Shallow water models are given names of the formxswl ,
in which l andx play the same roles. A few examples will suffice to convey the meaning:
sbr6 is a scalar barotropic model at grid level 6 (as in most of the simulations of Stuhne
and Peltier [1]);ssw5 is a scalar shallow model on a level-5 grid;vsw7 is a vector shallow
model on a level-7 grid, etc.

4. TEST CASES I: THE STANDARD TEST SUITE

The first results which we will consider, that have been obtained by applying the method-
ology outlined in the preceding section, derive from the standard numerical tests proposed
by Williamson et al. [11] for shallow-water models on the sphere. In performing these
tests, we have utilized a variety of subroutines and data which were obtained from the
/pub/chammp/shallow directory of theftp.cgd.ucar.edu server. First, all evaluations
of analytically specified fields were performed with the original components of theCHAMMP

semispectral shallow-water model on a 640× 320 Gaussian grid. Results were then bi-
linearly interpolated onto the appropriate icosahedral grids. This is probably slightly less
accurate than direct evaluation at grid points, but we have found that interpolation errors
are extremely small. The same method was employed to evaluate fields fromnetCDF files
containing observational data since we found that the routines supplied for the evaluation of
spectral fields at arbitrary points were both prohibitively inefficient and less accurate at grid
levels 6 and 7. Finally, we also employed theCHAMMP model routines for plotting contoured
data and errors after interpolating linearly from the geodesic triangles of the icosahedral
grid to the points of the Gaussian grid.

All of the standard tests of Williamsonet al. [11] have been carried out in 32-bit arith-
metic on an SGI Challenge L server employingvswl models. In order to make additional
comparisons, a number of these simulations were also reproduced withsswl models or by
using 64-bit arithmetic on a Cray J90. The standard bases for comparison are the published
solutions of Jakob-Chienet al. [33] for the spectral transform model. None of the icosahe-
dral grid point models discussed (our own included) has yet achieved matching accuracy
in the dynamical tests. Amongst the other numerical methodologies referred to, the most
recent, and the one most comparable with ours, is that of Heikes and Randall [14, 15]. In
particular, thetwig02562 andtwig10242 models of these authors, which were integrated
in (≥64-bit) Cray arithmetic, have the same number of degrees of freedom, respectively, as
ssw4 andssw5 models. In the selection of results to be discussed herein, we will make a
number of comparative references to Heikes and Randall [14, 15] and it will be of benefit
to consider two general points at the outset. First and trivially, some of the plots in the
above-cited papers deviate from the formats requested in Williamsonet al. [11], e.g., in
showing different projections and illustrating contours ofhT − h rather thanh− hT as the
error from reference solutionhT . As already stated, we have employed the original plotting
routines and conventions. The second point, which is of far greater significance, is the at-
tention given by Heikes and Randall [15] to the issue of the global accuracy of numerical
operators on their twisted icosahedral grid. Specifically, they have shown, in considering the
analogues of our grid levels 2 through 5, that their finite difference discretization manifests
a degradation of accuracy which makes the operators significantly less than second-order
accurate over higher resolution ranges. Heikes and Randall [15] describe a modification of
the basic grid structure which allows for the difficulty to be controlled in the case of the
discretized Laplace and flux-divergence operators, but it remains a problem for the other



42 STUHNE AND PELTIER

operators (in particular, they do not consider the effects of making multiple passes through
the data in computing the∇2(u2/2) operator). The finite element multigrid methods and
numerical differential operators described in Section 3 and in Stuhne and Peltier [1] are
derived in a way which circumvents thea priori difficulties associated with the techniques
that Heikes and Randall adapt from Williamson [8] and Masuda and Ohnishi [13]. However,
in discussing the practical application of our methods to Test Case 3 below, we will illustrate
that there is nevertheless a marked degradation of the convergence rate on high resolution
grids (l = 6 andl = 7) which can be attributed to a number of factors. It should therefore
not be assumed that the issue of operator convergence has necessarily been fully resolved
for icosahedral grid structures in the present work and this is an area which therefore war-
rants further study. We do not analyze it in detail herein, nor do we attempt to implement
optimizations of our numerical methodology. Our focus, rather, will be on the numerical
issues previously discussed.

Space will not permit us to discuss herein the results obtained for all of the standard
tests of Williamsonet al. [11]. In particular, Test Cases 4 and 6 will not be analyzed and
we will not deal with Test Case 1, except to simply note that a similar advection test for
the Lax–Wendroff scheme on our grid was described in Stuhne and Peltier [1]. The results
obtained for the standard advection test under the leapfrog integration scheme employed in
this study manifest an error distribution and magnitude that are very similar to those reported
by Heikes and Randall [14] for the corresponding resolution using their methodology.

4.1. Test Case 2: Global Steady-State Nonlinear Balanced Flow

The first test case we will consider assumes an initialQ0 field that represents a simple
solid body rotation and takes the form

Q0 = 13

12
z′, (51)

in which z′ is a coordinate whose axis is the originalz-axis rotated by an angleα towards
the originalx-axis; i.e.,

z′ = zcosα + x sinα. (52)

If we take the new Coriolis parameter to bez′ (rather thanz) and seth0 to the balanced
height field corresponding to this nondivergent flow, then we have, for any rotation angleα,
a steady state flow which should remain unchanged for all time. Errors and imperfections in
the numerical solution may be ascertained by comparison with the analytical solutions for
u, v, andh provided in Williamsonet al.[11]. All simulations to which we refer herein have
been integrated for the required 5 days at grid level five with a time step1t = 225 s and a
(dimensional) diffusion parameterν= 6.4× 1025 m6/s. Like Heikes and Randall [14], we
have found that the quality of the solutions does not appreciably depend upon the rotation
angleα, verifying that our grid and discretization are almost spatially homogeneous in the
way in which they resolve the surface of the sphere.

In Fig. 2, we plot thel∞ error inh as a function of time for four integrations: specifically,
a 32-bit and a 64-bit run with each of the modelsvsw5 andssw5 at rotation angleα=π/2.
What this figure clearly shows is that the approximate steady-state height field in thevsw5

simulations fluctuates little, in thel∞ sense, from the initial estimate obtained by solving the
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FIG. 2. Test Case 2. Time series ofl∞(h) errors for 32-bit and 64-bit integrations ofvsw5 andssw5 models
for steady state solid-body rotation withα=π/2.

discrete form of Eq. (17) (in which we chooseH0 so that the constant component agrees with
that in the analytical solution of Williamsonet al. [11]). As might be expected, thel∞(h)
error is appreciably (about four times) smaller, where this elliptic Poisson problem is solved
at higher numerical precision. The error in the 64-bitvsw5 simulation is about 4.5× 10−4,
as compared to thel∞(h) error of approximately 1.5× 10−4 manifested by Heikes’ and
Randall’s [14]twig10242model for this same case. Given the clearly sensitive dependence
of the error measures upon numerical precision, the modest discrepancy could easily be
accounted for in terms of factors already discussed (in particular, the special optimizations
applied by Heikes and Randall to the discrete Poisson problem as well as our method of
interpolating analytical fields). If this is taken into consideration, it is fairly safe to conclude
that the performance of ourvsw5 model is quite comparable to that of Heikes and Randall’s
[14, 15]twig10242model. This is, however,notthe case with ourssw5model, in which, as
Fig. 2 shows, thel∞(h) error quickly rises to and then fluctuates over a range of substantial
values(5× 10−3–10−2). Furthermore, except in the very early stages of the integration, the
character of this error isnotsensitive to numerical precision in the sense that the 32-bit and
the 64-bit results do not differ appreciably. We therefore see that the quality of steady-state
solutions is significantly poorer underssw5 integrations, but it is more stable with respect
to small computational inaccuracies.

It is interesting to note the fact that Heikes’ and Randall’s [14, 15]twig10242 model,
which incorporates only scalar quantities as integrated prognostic variables, has perfor-
mance similar to our vectorvsw5model. Our own scalarssw5model, in contrast, manifests
an initial transient and converges to a computational steady state slightly different from the
imposeda priori analytical flow. Another way of saying this is that the numerical state of
“balance” for the discrete form of system (11)–(13) appears, due to the particular sequence
of operations implicit in its solution, not to coincide precisely with the Charney [26] balance
criterion of Eq. (17). There is, however, noa priori problem in this since the definition of
Charney balance itself derives from somewhat arbitrary approximations. As we shall see in
the results of Case 5 below, there is little discrepancy between the error norms ofvsw5 and
ssw5 simulations under non-steady-state conditions.
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4.2. Test Case 3: Steady-State Nonlinear Balanced Flow with Compact Support

This test case is identical to Case 2, except that theQ0 initial condition in the rotated
coordinate system represents a more complex flow, containing a compact zonal jet within
a limited range of (rotated) latitudes and a vanishing velocity field outside this region
(see Williamsonet al. [11]). At given resolution, we have employed the same numerical
parameters in these integrations as in Case 2. Specifically, we employ, at grid levell , a time
step1t = 25−l1t0, and a hyperdiffusive filtering parameterν= 325−lν0, where1t0 andν0

are the level-5 values given in the preceding subsection.
Appropriate comments in connection with the results obtained from our simulations of

Case 3 are generally the same as those for Case 2. As previously stated, we will consider the
convergence properties of thel1, l2, andl∞ errors inh andu after 5 days with increasing grid
level l . Results are shown in Fig. 3 from 32-bitvswl integrations forα=π/3 andl varying
from 3 to 7. We plot, in addition to the six basic error measures, the curve(0.8× 2−l )2,
whose functional form indicates an ideal quadratic convergence rate with respect to the
mesh constant. It is thereby shown that this theoretically expected convergence rate is
closely maintained up to level 5 by all error measures and up to level 6 by all but thel∞(u)
error (which can be somewhat quirky when a few grid points fall very close to the poles of
the imposed spherical polar coordinate system). Between levels 6 and 7, however, there is
a clear degradation in the convergence properties of all error measures. As we have already
discussed, it is a significant issue as to whether or not this and similar results are symptomatic
of a general convergence problem similar to that discussed by Heikes and Randall [15]. In
considering this possibility, it should be noted, however, that the errors in these results
from Case 3 include the combined contributions of spatial and temporal truncation errors,
computational noise, numerical imprecision, interpolation, and other factors which have not

FIG. 3. Test Case 3. Convergence with grid level,l , of l1, l2, andl∞ error norms ofh andu after 5 model days.
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been considered in a controlled way. We have not, as yet, developed any means of precisely
quantifying these various influences at very high grid-point resolution, nor could we find
any published results pertaining to comparably fine icosahedral mesh structures. Over the
range of resolutions which are commonly considered, the convergence properties of our
model are very good.

4.3. Test Case 5: Zonal Flow over an Isolated Mountain

The initial condition for this case is specified identically to that of Case 2, except for the
choice ofα= 0 (i.e.,z′ = z), of a slower solid body rotation field described by

Q0 = 1.043049z, (53)

and of a nonzero static underlying topography given by

hs = 50

149

{
1−min

[
1,

9

π

√(
λ− 3π

2

)2

+
(
θ − π

6

)2
]}
. (54)

This choice of thehs field corresponds to an isolated mountain of nondimensional height
50/149 (about 1/3 of the total fluid layer thickness) which is centered at polar coordinates
(λc, θc)= (3π/2, π/6) (see Williamsonet al. [11]). Such a feature plays a role similar
to that of the quasi-topographic forcing,F , introduced in our vortex erosion simulations
(next section). Namely, it is a spatially fixed anomaly which excites strong nonlinear waves
in the steady basic state. In the present case, however, the configuration does not result
in an intense enstrophy cascade with its associated chaotic vortex dynamics. The flow is,
therefore, considerably simpler from a computational perspective.

No analytical solution is available for the unsteady flow that develops in Case 5, so
comparisons may only be made at 1-day intervals with results output from a high resolution
T-213 semispectral model and distributed in the fileREF0114.cdf. We have performed
32-bit integrations of this case over the required 15-day interval with bothvsw5 andssw5
models employing (dimensional) numerical parameter valuesν= 5.12× 1026 m6/s and
1t = 56.25 s. In Fig. 4, we show contour plots after 15 days of thevsw5 height field,
h, and of the deviation,h− hT , from the T-213 simulation for both thevsw5 and the
ssw5 integrations. Theh contour plot is virtually indistinguishable by inspection from the
twig10242 results illustrated by Heikes and Randall [14]. Furthermore, thevsw5 error
field shows a very similar distribution to that of thetwig10242 andtwig02562 models
of these authors, although the absolute magnitudes of the errors are slightly smaller in the
≥64-bittwig10242 results and slightly larger in the corresponding results fromtwig02562

(whose resolution corresponds to our grid level 4). Examination of the error field for the
ssw5 model in Fig. 4 reveals that the magnitudes of the error in the contoured field do not
differ significantly from those in thevsw5 results, but that the spatial distributions do differ
somewhat. The fact that these integrations quickly approach a stage in which the quantitative
error measures are very similar is confirmed in Fig. 5, in which we plot time series of the
l1, l2, andl∞ errors ofh for bothvsw5 andssw5 models. The discrepancy in the spatial
distribution of errors is explicable in terms of our earlier remark that the discrete forms of
the two mathematical formulations appear to embody slightly different criteria of balance
(or, in the terminology introduced by Leith [34], slightly different “slow manifolds”).
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FIG. 4. Test Case 5. Height field,h, of vsw5 model after 15 days and corresponding deviation,h− hT , from
high-resolution T-213 simulation forvsw5 andssw5 models.
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FIG. 5. Test Case 5. Time series ofl1, l2, andl∞ error norms ofh for vsw6 andssw6 simulations.

FIG. 6. Test Case 5. Shallow-water total energy and potential enstrophy conservation results forvsw6 and
ssw6 simulations.
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To complete our consideration of Case 5, we turn our attention to Fig. 6, which shows
time series of the fractional conservation violations,Ii (ξ), in the total numerical shallow-
water energy and potential enstrophy of thevsw5 andssw5models. In order to deemphasize
the influence on the total energy of the large background height field, we follow Heikes
and Randall [14] in subtracting the potential energy,Ep0, of a reference state (we employ
the solution att = 0 for this purpose). The conservation properties forE− Ep0 of our two
models are essentially identical in terms of the maximum global violations (about 0.04), but
they do differ somewhat in the detailed time evolutions of this error after the very early stages
of the simulation. The results of both, in the sense of absolute fractional deviations, are very
similar to those reported by Heikes and Randall [14] for their models (about 0.05). The
potential enstrophy conservation of thetwig10242 model of Heikes and Randall [14], in
contrast, is better than that of either of our models, manifesting a deviation of about 2× 10−5

over the run. Our potential enstrophy conservation violations are, for comparison, about
1× 10−3 for ssw5 and 2× 10−3 for vsw5. These violations are manifested in the decay
of enstrophy, as would be physically reasonable on the basis of dissipation by subgrid
scale processes. Interestingly, Heikes’ and Randall’s [14] enstrophy violations, although
quantitatively smaller, appear as an unnaturalenhancementof this quantity which could
prove destabilizing in strongly nonlinear simulations (such as the vortex erosion tests which
we consider in the next section), wherein there is a very intense nonlinear enstrophy cascade
taking place.

It is not surprising that models which explicitly discretize the conservation law of flux
form governingQ should exhibit better global enstrophy conservation properties, as oc-
curs in the relation between ourssw5 andvsw5 results. Heikes’ and Randall’s models, in
which the time-stepping scheme forh∗ andQ is constructed explicitly on the basis of the
flux-conservation laws, exhibit still better global enstrophy conservation. Flux-conserving
advection schemes are easily incorporated into our own scalar models and, indeed, we have
already experimented with a simple Lax–Wendroff method (see Stuhne and Peltier [1]). In
the present study, we have avoided introducing such complicating factors and consider only
direct local approximations of the governing PDEs.

4.4. Test Case 7: Prescribed Height and Velocity Initial Conditions

The last standard test case for shallow-water models on the sphere that we will describe
entails the direct initialization of a numerical integration with, in general, a divergent velocity
field derived from atmospheric observations, along with a height field which is defined so as
to correspond to the measured altitude of the 500-mb pressure surface in these observations.
We will consider herein only the particular subcase in the test suite which is initialized with
the atmospheric data of 00:00 GMT on Dec. 21, 1978 (see Williamsonet al. [11]). These
initial conditions (to which nonlinear normal mode initialization has been applied so as to
reduce spurious gravity wave activity) are, along with the output at days 1, 2, 3, 4, and 5
from a subsequent high-resolution (T-213) spectral transform integration, distributed in the
file REF0077.cdf. We setu0 andh0 in anvsw5 model according to these initial conditions
and integrate for 5 days with the sameν and1t parameters employed in Case 5. Figure 7
presents, in the form of two contour plots after 5 model days on a polar stereographic
projection of the northern hemisphere, the height field,h, and the deviation,h− hT , from
the T-213 results. Once again, there is a very close correspondence between the height
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FIG. 7. Test Case 7. Height field,h, of vsw5 model in polar stereographic projection after 5 days and
corresponding deviation,h− hT , from high-resolution T-213 simulation.

field of our vsw5 simulation and that of Heikes’ and Randall’s [14]twig10242 model.
The height errors delivered by the two models also manifest a very similar distribution,
although, in this case, it is our model which exhibits a modestly smaller error magnitude.
The latter result, which is confirmed by thel∞(h) error measures (not shown), further
supports the contention, often repeated in this section, that thevsw5 model is closely
comparable in accuracy totwig10242, the modest discrepancies between them depending
upon the detailed characteristics of the particular circumstance selected as the basis for
comparison.

5. TEST CASES II: POLAR VORTEX EROSION

We next turn our attention to additional, more computationally challenging, test cases
which relate to an interesting phenomenon of nonlinear wave/mean-flow interaction which
occurs when a polar vortex is eroded by a quasi-steady wavenumber 1 forcing in the form
of an impinging Rossby wave. The ensuing dynamical interaction, originally studied in
the well-known simulations of Juckes and McIntyre [4], occurs in response to a large
scale, nonzonal perturbation to the Coriolis parameter that is smoothly activated and then
deactivated over a period of many model days. Juckes and McIntyre [4] have demonstrated,
in the course of their work which employed a spectral transform, absolute vorticity advecting
discretization of the nondivergent barotropic governing equations, that this forcing induces
a nonlinear wave-breaking event at a latitude where the zonal phase speed of the wave
matches the zonal velocity of the mean flow, which culminates in the erosion of small-scale
vortices and thin vorticity filaments from the main polar vortex. The secondary vortical
structures thereafter interact with each other and with the zonal flow in a way that closely
mimics the atmospheric phenomenon that occurs in the wintertime stratosphere of Earth’s
southern hemisphere, a phenomenon that is of considerable importance to the understanding
of the Antarctic ozone hole.

We will not concern ourselves further herein with discussion of the physics of the vor-
tex erosion problem since this has been extensively discussed elsewhere. Following the
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arguments presented in Stuhne and Peltier [1], we will, rather, employ this phenomenol-
ogy to define an especially challenging benchmark that may be used to further investigate
the quality of numerical models of flow on the 2-sphere. As such, it is particularly useful
from the perspective of the present study since, unlike the previously discussed tests of
Williamsonet al.[11], it is realizable within all four of our discretizations (i.e.,vbrl , sbrl ,
vswl , andsswl ), shallow water simulations requiring only the additional input of a Froude
number,F0. In Stuhne and Peltier [1], we have already presented and compared vortex ero-
sion results obtained fromsbr6 models under a variety of numerical conditions and from
onesbr7 model. These simulations have verified that the dynamical processes involved
in vortex erosion are properly resolved and that, moreover, their physical characteristics
are essentially unaffected by variations in grid-scale numerical behaviour associated with a
change of advection scheme, a change of hyperviscous diffusion parameter, or a doubling
of resolution (provided, of course, that the model is numerically stable under the requisite
conditions). In the present study, we set these specifics in a consistent way and focus in-
stead upon the potentially far more significant impact of employing completely different
mathematical formulations of the dynamical equations. As touched upon in the discussion
of results for Test Cases 3 and 5, different discretizations of the shallow water equations can
imply slight variations in the computational “slow manifold.” Where this is the case, the
influence of fluctuations in models with numerically identical initial conditions neednot
be confined to small-scale computational noise. Rather, in instances of chaotic flow char-
acterized by a strong inverse energy cascade, as occurs in the later stages of polar vortex
erosion, fluctuations can develop into significant deviations in the dynamically significant
behaviour.

All of the simulations to be discussed have been performed with the leapfrog advec-
tion scheme on gridl = 6. Having approximately 320 points along any diameter, this grid
level is comparable in resolution at the equator to the T-159 spectral transform model of
Juckes and McIntyre [4]. In Stuhne and Peltier [1], we describe results from thessw6

model which are qualitatively appropriate and consistent under various changes in model
parameter, but which manifest traces of anomalous, nonisotropic noise associated with
thin filaments of vorticity (see Stuhne and Peltier [1]). It will be of particular interest,
therefore, to examine how these and other subtle qualitative features of the small scale,
nonlinear vortical structures are affected by the choice of mathematical formulation. To
provide an initial point of reference, we illustrate in Fig. 8 the results of a complete
17-day integration of the vortex erosion problem obtained with our nondivergent vector
barotropic model,vbr6. As in thesbr6 simulations first discussed in Stuhne and Peltier
[1], a (dimensional) time step of1t = 300 s and a hyperviscosity ofν= 6.8× 1023 m6/s
were employed, the same values originally used by Juckes and McIntyre [4]. We show, at
1-day intervals, a stereographically projected, 200× 200 pixellated rendition of absolute
vorticity, Q, in which the intensity of each pixel is set according to the linearly inter-
polated value of the field at its projected center point on the surface of the sphere (the
Q-scale being indicated by the colour bar). Up until approximatelyt = 7, comparison of
the dynamic progression shown in Fig. 8 with the results for thesbr6 model shown in
Stuhne and Peltier [1] will reveal the two to be essentially indistinguishable. These are the
stages of the evolution in which the linear and nonlinear Rossby wave-breaking dynamics
commence, leading to the initial stages of filamentation evident in thet = 7 frame. How-
ever, as we illustrate below, once the strongly nonlinear dynamics progress beyond this
critical stage, the slightly different representations of the computational “slow manifold”
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implicit in the different models cause the results to begin to manifest markedly divergent
features.

In order to facilitate the detailed intercomparison of the results delivered by the vari-
ous models, we show, in Fig. 9, three frames at timest = 9, t = 12, andt =15 from the
strongly nonlinear stages of each of five different simulations. The first set is fromvbr6

(a direct reproduction from Fig. 8); the second set is fromsbr6 (a direct reproduction from
Stuhne and Peltier [1]); the third and fourth sets of three frames are from the shallow-
water modelsvsw6 andssw6 integrated with1t = 20 s andν= 1.02× 1025 m6/s at Froude
numberF0= 1.48, while the last set is fromvsw6 under the same conditions, but with
F0= 3.32. In the shallow water simulations, we choose theH0 parameter in Eq. (17) so
that the mean component of the initial height field is unity, thus making the height scaling
consistent with the choice of a value forH in the specification of the Froude number. As
the figure confirms, the shallow water simulations with the relatively small Froude number,
F0= 1.48 (corresponding to a deep layer) are in a quasi-barotropic scaling regime in which
their dynamics resemble those of the nondivergent barotropic model. The similarities of
phenomenology between the flows are explicable in terms of the fact that the shallow-
water models should tend to persist in a “balanced” state (or, in Leith’s [34] terms, on
a “slow manifold”) satisfying the Charney balance condition of Eq. (17) or some refine-
ment thereof (see, e.g., McIntyre and Norton [35]). The fact that our models exhibit these
similarities is further evidence of their consistency. The evident differences in the quan-
titative predictions of the models after the onset of Rossby wave breaking are, moreover,
also explicable because any small errors in the instantaneous applicability of the balance
constraints (as must arise from discretization and from the nonzeroF0 value in the shallow
water simulations) will result in a chaotic amplification of deviations between trajecto-
ries beginning from the same initial condition. In order to illustrate also a case in which
a large deviation from Charney balance develops and plays an important rˆole in the dy-
namics, we also include results from the simulation at higher Froude number,F0= 3.32,
wherein it is clear, as we discuss further below, that significantly different phenomenology
occurs.

Examination of thet = 9 frame in each of the first four simulations shown in Fig. 9
will reveal that there is just beginning to be a qualitative divergence between the struc-
tures of the predictedQ fields. Specifically, the “tail” of the vorticity filament manifests
varying behaviour in its interaction with the background flow; i.e., it points in different
directions in thevbr6 and sbr6 simulations and “fades out” in thevsw6 simulation.
Also, the protuberance which is evident on the main vortex exhibits small variations of
shape across the simulations. Discrepancies become considerably more pronounced in
the t = 12 andt = 15 frames, with significant variations between the patterns of vorti-
cal and filamentary structures which are shown for the different simulations. All, how-
ever, manifest the appropriate qualitative behaviour and there are, moreover, significant
robust features. Examples of the latter are the coherence and basic shape of the cen-
tral vortex and, at timet = 15, the presence of a small, compact cyclone at a consistent
position and of a more diffuse anti-cyclonic structure adjacent to the main vortex. One
feature to note is the fact that only thesbr6 simulation appears to manifest a signi-
ficant level of what is clearly anisotropic computational noise associated with the fila-
ments in framest = 12 andt = 15 (thevbr6 model shows traces att = 12 but these are
much fainter). The effects which we ascribed to under-resolution in Stuhne and Peltier
[1] do not seem to occur appreciably in the new formulations introduced in this study.
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FIG. 8. Half-toned plots of the absolute vorticity field,Q, in polar stereographic projection for avbr6 vortex
erosion simulation.
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FIG. 9. Half-toned plots of theQ field at timest = 9, t = 12, andt = 15 for vbr6 andsbr6 models;vsw6
andssw6 models atF0= 1.48; andvsw6 model atF0= 3.32. Format and scaling are as in Fig. 8.
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Since the basic numerical elements employed are the same, we can speculate that mod-
els with a greater number of computational degrees of freedom may be less susceptible
to noise (the scalar barotropic model, of course, advects only a single prognostic scalar
field).

Turning our attention, now, to the final shallow-water simulation atF0= 3.32, it will
be clear that, in this regime, the pattern of the flow differs in significant ways from the
nondivergent barotropic predictions. Byt = 9, for instance, the structure formed by the
polar vortex and its associated filament is shifted in phase and significantly distorted in
shape from the pattern in the first four simulations. Even more pronounced discrepancies
are evident att = 12, where there is a clear intrusion of low absolute vorticity fluid into
a narrow band around the central vortex, an effect which strongly steepens theQ gradi-
ent in this region. Similar dynamics are discussed by Juckes [36] in relation to spectral
transform shallow-water simulations of the winter stratosphere under equivalent scaling
conditions (although these simulations introduce forcing in a different manner and there-
fore cannot be directly compared to our own). Another observation to be made is that the
filamentary structures in theF0= 3.32 simulation are, at later times, considerably weaker
than in theF0= 1.48 and nondivergent barotropic simulations, with correspondingly more
absolute vorticity concentrated in large-scale “rolled-up” structures consisting of tongues
of vorticity spiralling into central “beads”. Finally, as is evident in thet = 15 frame, the cen-
tral cyclonic polar vortex in the high Froude number simulation is significantly elongated,
whereas those in the other cases are close to circular. We will not discuss further herein
the qualitative differences between barotropic and shallow-water results. The point which
has been made is that the differing behaviour atF0= 3.32 demonstrates that our model
resolves an inherently shallow-water scaling regime to which nondivergent barotropic the-
ory is no longer a good approximation. As is to be expected, varyingF0 through a range
of intermediate values (not shown) creates a continuous transition in the nature of the
dynamics.

The final issue we will consider concerning the results obtained on the basis of the
test simulations of the vortex erosion case pertains to the conservation of invariants by
the nondivergent barotropic modelsvbr6 andsbr6. The quasi-topographic forcing is in-
troduced through the functionF in a way which does not invalidate the formal energy
and enstrophy conservation properties of the nondivergent barotropic equations and we
may therefore gauge our models’ performance in numerically conserving these quantities.
Figure 10 shows time series of fractional conservation violations,Ii [ 1

2u · u] andIi [ 1
2 Q2], for

vbr6 andsbr6. These demonstrate the fact that the vector model conserves kinetic energy
somewhat better than its scalar counterpart, although, in absolute terms, the variation of sev-
eral percentages which occurs in each is quite large. The enstrophy conservation results tell
a similar story, although, in this case it is the scalar model which performs modestly better,
which is consistent with our considerations in the discussion of Test Case 5. Neither these
relatively poor conservation results nor the discrepancies between the models are surprising
when one recognizes, in the light of the above discussion, that the intense nonlinear inverse
cascade will effectively propagate the effects of the grid-scale dissipation of enstrophy to
the large-scale dynamics. Conservation properties of the shallow water models, which we
have considered in the context of an earlier test, are significantly better, but, pertaining
to quantities defined in a different way, are not directly comparable to their nondivergent
barotropic analogues.
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FIG. 10. Kinetic energy and potential enstrophy conservation results forvbr6 and sbr6 vortex erosion
simulation.

6. CONCLUSIONS

The basic body of numerical methodology first employed in theQ-advecting non-
divergent barotropic model of Stuhne and Peltier [1] has been successfully applied to the
discretizations of scalar and vector formulations of more general one-layer fluid dynamic
systems on the sphere (i.e., to shallow-water dynamics, as well as nondivergent barotropic
dynamics). All of the resulting models, which we have denoted by the namesvbrl , sbrl ,
vswl , andsswl , have been shown to be capable of resolving the complex dynamics involved
in the process of polar stratospheric vortex erosion (see Juckes and McIntyre [4]). Such flows,
being strongly nonlinear and involving the intense cascade of enstrophy to small scales, are
very challenging computationally, and our results therefore suggest that the methodology
under consideration is, in general, well-suited to the analysis of the full gamut of near-
inviscid fluid dynamic phenomena. With the shallow water modelsvswl andsswl , we have
also successfully simulated the simpler, but still important, physical configurations invoked
in the standard test set of Williamsonet al. [11]. Given these results and the fact that our
basic methodology is very versatile in its applicability to different models and its extendibil-
ity to discretizations of arbitrary spatial dimension, we can conclude that it is likely to be
well-suited to the general problem of simulating three-dimensional hydrodynamic flows in
spherical shell geometry. This is clearly the goal towards which we are working.
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Being based upon the same numerical components as those described in Stuhne and
Peltier [1], all of the models we have discussed herein maintain theO(n) complexity in
operation count per time step which we demonstrated in this previous paper. We have as
yet expended very little effort to optimize the individual model codes employed, and so
we will not discuss the absolute performance of these models in great detail but merely
reiterate the result of Stuhne and Peltier [1] that ansbr6 vortex erosion simulation runs
at approximately 2.5 CPU seconds per time step on one processor of an SGI Challenge L
server with a 150-MHz clock. Of greater interest is the relative performance of the various
models and configurations considered. In this regard, thevbr6 barotropic model has been
found to be much less efficient, taking about 3.5 times as many CPU seconds per time
step. This much poorer performance may be ascribed to the additional number of degrees
of freedom which must be advanced in time and to the fact that the divergence correction
term,ρ∗li , in the RHS of the elliptic height equation changes abruptly at leapfrog restart
intervals (every tenth step), thus requiring more solver iterations. In contrast, the scalar
shallow-water model,ssw6, takes only about 1.7 times the CPU time per step asvbr6.
As expected, the vector version of the shallow water model,vsw6, is cheaper still, taking
about 1.6 times the CPU time of the original model described in Stuhne and Peltier [1].
The fact that these last two figures are comparable, however, suggests that the requirement
for iterative elliptic inversions at each step does not, in and of itself, necessarily result in a
model which isdramaticallyless efficient. Performance would, of course, degrade further
if more accuracy (and hence a greater number of iterations) were required, but usually only
a few iterations (or even one) per time step are sufficient. This result thatsswl models need
not be much less efficient than theirvswl counterparts implies, from our earlier discussion,
that it may be of benefit to consider the implementation of semi-implicit time stepping in
either model if it were to be employed as the basis of an actual production code.

We have found, on the basis of the shallow water test set results, that the accuracy of
our vsw5 model and the spatial distribution of its manifested numerical errors are both
comparable to those of thetwig10242 model of Heikes and Randall [14, 15]. One or the
other produces modestly better results depending upon the particular details of the case
being analyzed. In comparing our two shallow water formulations, we have found that
numerical predictions made withsswl models tend to manifest similar quantitative error
measures as those made withvswl models, except in integrations of Charney balanced
steady-state flows (where the latter models fare significantly better). The results from Test
Case 1 and the spatial flow structures exhibited in Test Case 5 and in the simulations of
polar vortex erosion all suggest that discretizations of the two different mathematical forms
of the shallow-water equations exhibit slightly different “slow manifolds” in the sense of
Leith [34]. There is no reason to prefer one or the other on this basis since there is no known
physical rationale for a particular balance criterion to be imposed. However, for any given
discretization, it will, of course, be of benefit to develop a specifically tailored balancing
algorithm which will enable simulations to be initialized in computational steady states.
The straightforward inversion of the Poisson problem in Eq. (17) which we employed all
cases (except Test Case 7) has clearly proven to be better in this regard in its application to
vector models. A suitable alternative for the scalar models would require additional effort
in development.

In terms of other comparisons, the scalarsswl models have shown modestly better enstro-
phy conservation properties, properties which could, no doubt, be further improved under
time-stepping schemes which exploited the conservation equations of flux form governing
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h∗ andQ. Stuhne and Peltier [1] have already implemented a simple version of such a scheme
for the nondivergent barotropic model, and substantially more sophisticated schemes may
also be developed. Vector models are, in contrast, potentially extensible to simulate a wider
class of nonhydrostatic 3D flows and can, if semi-implicit time-stepping is not used, avoid
the need to solve elliptic problems at each time step. It would likely benefit applications of
our methodology which do require the solution of the Poisson problem to refine this aspect
of the numerical structure so as to achieve improved accuracy. The multigrid algorithm and
smoother we have employed are by no means optimal for the 2-sphere, and better results
might, no doubt, be obtained with some more sophisticated scheme. From the perspective of
the application of this methodology to three-dimensional problems, however, it is sensible
to focus the effort on a solver which is already known to have a direct 3D analogue. Beyond
the elliptic inversion procedure, there are also further improvements which can be made
in the other components of our numerical framework. One might, for instance, refine the
numerical differentiation procedure to better take into account the slight local curvature of
the sphere between adjacent grid points. As already discussed in Section 3.4, one might
also experiment with alternative means of implementing spatial and temporal filters which
eliminated some of the deficiencies of our present scheme. We are actively considering these
and other refinements as possible means of improving the methodology. Even as it stands,
however, this methodology has been shown to produce competitive results (as compared,
specifically, with the model of Heikes and Randall [14, 15]).
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